Purpose: To evaluate the positive dual-modality positron emission tomography/computed tomography (PET/CT) of choroidal melanoma with chromosome 3 loss and tumor size.
Methods: Thirty-seven consecutive patients with choroidal melanoma with known chromosome 3 status who underwent whole-body PET/CT imaging were retrospectively reviewed. Cytology and chromosome 3 loss were identified by fine-needle aspiration biopsy. Fluorescent in situ hybridization and whole genome microarray by single-nucleotide polymorphism were used to evaluate the chromosome 3 status. Metabolic activity of primary choroidal melanoma by PET/CT imaging was evaluated.
Results: Thirteen of 37 (35%) primary choroidal melanomas had loss of chromosome 3; 7 of the 13 (54%) melanomas were positive for metabolic activity identified by PET/CT imaging. All 24 of 37 melanomas without chromosome 3 loss were inactive for metabolic activity. There was a statistically significant association between positive metabolic activity and chromosome 3 loss (P = 0.00017 Fisher exact test); positive PET/CT imaging was 54% sensitive and 100% specific for loss of chromosome 3. Seven of 37 (19%) choroidal melanomas with positive metabolic activity by PET/CT were statistically significantly larger in size than the 30 metabolically inactive melanomas (P < 0.001, Kruskal-Wallis test).
Conclusion: Positive metabolic activity of choroidal melanoma identified by PET/CT imaging was statistically significantly associated with chromosome 3 loss and larger tumor size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IAE.0b013e3181b32f36 | DOI Listing |
Genes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands.
Background: The 5-year prognosis of non-high-risk neuroblastomas is generally good (>90%). However, a proportion of patients show progression and succumb to their disease. We aimed to identify molecular aberrations (not incorporated in the current risk stratification) associated with overall survival (OS) and/or event-free survival (EFS) in patients diagnosed with non-high-risk neuroblastoma.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland.
High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) is a rare germi-nal centre lymphoma characterised by a typical gain/loss pattern on chromo-some 11q but without MYC translocation. It shares some features with Burkitt lymphoma (BL), HGBCLs and germinal centre-derived diffuse large B-cell lym-phoma, not otherwise specified (GCB-DLBCL-NOS). Since microRNA expression in HGBCL-11q remains unknown, we aimed to identify and compare the mi-croRNA expression profiles in HGBCL-11q, BL and in GCB-DLBCL-NOS.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!