Construction and clinical application of a human tissue-engineered epidermal membrane.

Plast Reconstr Surg

Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: March 2010

Background: Prolonged healing times and hypertrophic scarring of the donor site for split-thickness-skin grafts thicker than 0.3 mm are common problems that continue to challenge plastic surgeons in the clinic. As such, a human tissue-engineered epidermal membrane was constructed to promote wound healing and reduce scar hypertrophy.

Methods: An artificial allogenic epidermis was created in vitro using human keratinocytes and chitosan-gelatin membrane. Split-thickness skin graft donor sites were divided into three treatment groups: those covered with the combined keratinocyte/chitosan-gelatin membrane, those covered with chitosan-gelatin membrane only (control group), and those covered with traditional petroleum jelly gauze (blank group). The degree of wound healing was assessed at various time points after the operation by gross observation, hematoxylin and eosin staining, immunohistochemistry, and an assay of type I collagen using the picrosirius polarization method. Reverse-transcriptase polymerase chain reaction detection of the Y chromosome was also performed to distinguish between sexes.

Results: Over a 6-month observation period, treatment with the human tissue-engineered epidermal membrane (keratinocyte/chitosan-gelatin) appeared to decrease donor-site healing time (48 wounds in 24 cases). Average healing time was 8.1 +/- 1.3 days for the keratinocyte/chitosan-gelatin group, 16.4 +/- 1.7 days for the chitosan-gelatin group, and 22.9 +/- 4.2 days for the blank group. The artificial epidermis survived well and maintained a normal structure. Furthermore, hypertrophic scar formation was less severe for these wounds.

Conclusions: Keratinocyte/chitosan-gelatin membranes can be constructed in vitro and survive temporarily in vivo. They can be used to promote wound healing and reduce the severity of hypertrophic scarring of skin graft donor sites.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0b013e3181cc9665DOI Listing

Publication Analysis

Top Keywords

human tissue-engineered
12
tissue-engineered epidermal
12
epidermal membrane
12
wound healing
12
+/- days
12
hypertrophic scarring
8
promote wound
8
healing reduce
8
chitosan-gelatin membrane
8
skin graft
8

Similar Publications

Incorporating autologous patient-derived products has become imperative to enhance the continually improving outcomes in bone tissue engineering. With this objective in mind, this study aimed to evaluate the osteogenic potential of 3D-printed allograft-alginate-gelatin scaffolds coated with stromal vascular fraction (SVF) and platelet-rich fibrin (PRF). The primary goal was to develop a tissue-engineered construct capable of facilitating efficient bone regeneration through the utilization of biomaterials with advantageous properties and patient-derived products.

View Article and Find Full Text PDF

Tissue-engineered anisotropic cell constructs are promising candidates for treating volumetric muscle loss (VML). However, achieving successful cell alignment within macroscale 3D cell constructs for skeletal muscle tissue regeneration remains challenging, owing to difficulties in controlling cell arrangement within a low-viscosity hydrogel. Herein, we propose the concept of a magnetorheological bioink to manipulate the cellular arrangement within a low-viscosity hydrogel.

View Article and Find Full Text PDF

Vascular Endothelial Cells Derived from Transgene-Free Pig Induced Pluripotent Stem Cells for Vascular Tissue Engineering.

Acta Biomater

December 2024

Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA; Yale Stem Cell Center, 10 Amistad Street, New Haven, CT 06511, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA. Electronic address:

Induced pluripotent stem cells (iPSCs) hold great promise for the treatment of cardiovascular diseases through cell-based therapies, but these therapies require extensive preclinical testing that is best done in species-in-species experiments. Pigs are a good large animal model for these tests due to the similarity of their cardiovascular system to humans. However, a lack of adequate pig iPSCs (piPSCs) that are analogous to human iPSCs has greatly limited the potential usefulness of this model system.

View Article and Find Full Text PDF

Background: Osteogenic Bone Matrix (Altis™ OBM) is a tissue-engineered, porcine-derived demineralized bone matrix prepared using a humanization processing technology that confers biocompatibility and improved osteoinductivity. The objective of this study was to determine the safety and efficacy of OBM in patients with traumatic long bone defects in an open-label, non-randomized single-center study.

Methods: Diagnosis and main criteria for inclusion were open long bone fractures graded as Gustilo-Anderson Grade II, IIIA or IIIB.

View Article and Find Full Text PDF

Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells.

Bioact Mater

March 2025

Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA.

The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!