Background: 2-Deoxy-D-glucose (2-DG), a glycolytic inhibitor, was observed earlier to increase DNA, chromosomal, and cellular damage in tumor cells, by inhibiting energy-dependent repair processes. Lonidamine (LND) selectively inhibits glycolysis in cancer cells. It damages the condensed mitochondria in these cells, impairing thereby the activity of hexokinase (predominantly attached to the outer mitochondrial membranes). It inhibits repair of radiation-induced potentially lethal cellular damage in HeLa and Chinese hamster (HA-1) cells. However, other than a preliminary study on human glioma (BMG-1) cells in this laboratory, the effects of LND on radiation-induced cytogenetic damage have not been reported earlier.

Aims: These studies were carried out to investigate the effects of LND and 2-DG on cell proliferation, viability, and radiation response in the same human glioma cell line, under identical conditions. The respective drug concentrations were selected on the basis of earlier studies.

Materials And Methods: Human glioma (U373MG) cells were grown in the presence of LND or 2-DG for 2 days. Proliferation response and viability of U373MG human glioma cells were studied by cell counts and uptake of trypan blue dye. Radiosensitization (increase in micronuclei formation) was studied after short-term (4 h postirradiation) drug treatments.

Observations: Both the drugs (1) inhibited proliferation response in a concentration-dependent manner; (2) did not induce micronuclei formation in the unirradiated cells; and (3) significantly increased radiation-induced micronuclei formation at nontoxic concentrations.

Conclusions: These data suggest that the short-term presence of either lonidamine or 2-DG-at clinically relevant and nontoxic concentrations-could increase the treatment response of malignant gliomas at optimum radiation doses, reducing thereby the side effects of radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0973-1482.55145DOI Listing

Publication Analysis

Top Keywords

human glioma
16
micronuclei formation
12
cellular damage
8
cells
8
effects lnd
8
lnd 2-dg
8
proliferation response
8
modulation cellular
4
cellular radiation
4
radiation responses
4

Similar Publications

Purpose: We aimed to present our surgical experience and the impact of a solid or cystic morphology of cerebellar pilocytic astrocytoma (cPA) on surgery and the risk for a re-resection.

Methods: We retrospectively analyzed all children operated at our institution between 2009 and 2023 for cPA. Tumours were categorized into 4 groups: (i) cystic PA without cyst wall enhancement, (ii) cystic PA with cyst wall enhancement, (iii) solid tumour, (iv) and solid tumour with central necrosis.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review.

BMC Cancer

December 2024

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12-15 months, making it the most lethal type of brain tumor.

View Article and Find Full Text PDF

Introduction: Diffuse intrinsic pontine glioma (DIPG) in children comprises 80% of brainstem gliomas. In 2021, 5th edition of WHO CNS tumor classification defined H3K27M altered diffuse midline gliomas (DMGs) which replaced this entity. Lesion location precludes resection and the only current option available is radiotherapy.

View Article and Find Full Text PDF

Intraoperative assessment of tumor margins can be challenging; as neoplastic cells may extend beyond the margins seen on preoperative imaging. Real-time intraoperative ultrasonography (IOUS) has emerged as a valuable tool for delineating tumor boundaries during surgery. However, concerns remain regarding its ability to accurately distinguish between tumor margins, peritumoral edema, and normal brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!