A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modification of the hepatic hemodynamic response to acute changes in PaCO2 by nitric oxide synthase inhibition in rabbits. | LitMetric

Background: Hypercapnia has been reported to modify liver circulation. The vascular regulations implicated in this response remain partly unknown.

Methods: Using anesthetized and ventilated rabbits, we designed this study to evaluate the hepatic artery and portal vein blood flow velocity adjustments (20 MHz pulsed Doppler) after changes in PaCO2 (by varying the inspiratory fraction of CO2 and to assess the proper role of pH, independent of PaCO2 changes, the role of portal vein CO2, and the effect of nitric oxide synthase inhibition on CO2-induced modifications of hepatic hemodynamics.

Results: Increasing PaCO2 from 30.9 +/- 5 mm Hg to 77 +/- 11 mm Hg increased arterial blood pressure by 20% (P < 0.01) and hepatic artery blood flow velocity by 90% (P < 0.05) and decreased aortic blood flow velocity by 15% and portal vein blood flow velocity by 40% (both P < 0.05). Changes in pH (1 mL of 0.1 N hydrochloric acid infusion) or isolated changes in portal vein CO2 at constant PaCO2 induced by CO2 insufflation in an open abdomen had no effect on hepatic hemodynamics. Pretreatment with a nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine (2.5 mg/kg), blunted the systemic response to hypercapnia, whereas the portal modifications persisted, with a largely attenuated hepatic artery blood flow increase.

Conclusions: CO2 per se acts on hepatic blood flow by its systemic effect, probably via chemoreflexes. Nitric oxide does not mediate hepatosplanchnic hemodynamic modifications to acute changes in PaCO2 but may play a permissive role by regulating the amplitude of hepatic vascular response.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0b013e3181ca3c6fDOI Listing

Publication Analysis

Top Keywords

blood flow
24
nitric oxide
16
portal vein
16
flow velocity
16
changes paco2
12
oxide synthase
12
hepatic artery
12
acute changes
8
synthase inhibition
8
vein blood
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!