miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis.

Proc Natl Acad Sci U S A

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.

Published: December 2009

In a genetic screen in a drnl-2 background, we isolated a loss-of-function allele in miR319a (miR319a(129)). Previously, miR319a has been postulated to play a role in leaf development based on the dramatic curled-leaf phenotype of plants that ectopically express miR319a (jaw-D). miR319a(129) mutants exhibit defects in petal and stamen development; petals are narrow and short, and stamens exhibit defects in anther development. The miR319a(129) loss-of-function allele contains a single-base change in the middle of the encoded miRNA, which reduces the ability of miR319a to recognize targets. Analysis of the expression patterns of the three members of the miR319 gene family (miR319a, miR319b, and miR319c) indicates that these genes have largely non-overlapping expression patterns suggesting that these genes have distinct developmental functions. miR319a functions by regulating the TCP transcription factors TCP2, TCP3, TCP4, TCP10, and TCP24; the level of RNA expression of these TCP genes is down-regulated in jaw-D and elevated in miR319a(129). Several lines of evidence demonstrate that TCP4 is a key target of miR319a. First, the tcp4(soj6) mutant, which contains a mutation in the TCP4 miRNA-binding site complementary to the miR319a(129) mutation, suppresses the flower phenotype of miR319a(129). Second, expression of wild-type TCP4 in petals and stamens (i.e., AP3:TCP4) has no effect on flower development; by contrast, a miRNA-resistant version of TCP4, when expressed in petals and stamens (i.e., pAP3:mTCP4) causes these organs not to develop. Surprisingly, when AP3:TCP4 is present in a miR319a(129) background, petal and stamen development is severely disrupted, suggesting that proper regulation by miR319a of TCP4 is critical in these floral organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799693PMC
http://dx.doi.org/10.1073/pnas.0908718106DOI Listing

Publication Analysis

Top Keywords

mir319a
9
tcp4 critical
8
loss-of-function allele
8
exhibit defects
8
petal stamen
8
stamen development
8
expression patterns
8
petals stamens
8
tcp4
7
mir319a129
7

Similar Publications

Background: Embryogenic callus (EC) has strong regenerative potential, useful for propagation and genetic transformation. miRNAs have been confirmed to play key regulatory roles in EC regeneration across various plants. However, challenges in EC induction have hindered the breeding of drumstick (Moringa oleifera Lam.

View Article and Find Full Text PDF

MiR319a-mediated salt stress response in poplar.

Hortic Res

August 2024

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.

Maintenance of intracellular ion balance, especially Na and K, plays an important role in plant responses to salt stress. Vessels in xylem are responsible for long-distance ion transport in vascular plants. Knowledge on the salt stress response in woody plants in limited.

View Article and Find Full Text PDF

Dorsoventrally asymmetric expression of miR319/TCP generates dorsal-specific venation patterning in petunia corolla tube.

J Exp Bot

June 2024

Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China.

Vein-associated pigmentation (venation) is a type of floral coloration adopted by plants to attract pollinators. Several petunia (Petunia hybrida) lines generate dorsoventrally asymmetric venation patterning of the corolla tube, in which venation is only present in the dorsal tube. The molecular mechanism underlying this trait is unknown.

View Article and Find Full Text PDF

Overexpression of Contributes to Leaf Curl and Salt Stress Adaptation in and .

Int J Mol Sci

December 2022

Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Salt stress is a worldwide agronomic issue that limits crop yield and quality. Improving salt stress tolerance via genetic modification is the most efficient method to conquer soil salinization problems in crops. Crop miRNAs have been declared to be tightly associated with responding and adapting to salt stress and are advantageous for salt tolerance modification.

View Article and Find Full Text PDF

MicroRNAs are small non-coding RNA molecules that are produced in a cell endogenously. They are made up of 18 to 26 nucleotides in strength. Due to their evolutionary conserved nature, most of the miRNAs provide a logical basis for the prediction of novel miRNAs and their clusters in plants such as sunflowers related to the Asteraceae family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!