Although several markers have been associated with the characterization of regulatory T cells (Tregs) and their function, no studies have investigated the dynamics of their phenotype during infection. Since the necessity of Tregs to control immunopathology has been demonstrated, we used the chronic helminth infection model Schistosoma mansoni to address the impact on the Treg gene repertoire. Before gene expression profiling, we first studied the localization and Ag-specific suppressive nature of classically defined Tregs during infection. The presence of Foxp3+ cells was predominantly found in the periphery of granulomas and isolated CD4+CD25(hi)Foxp3+ Tregs from infected mice and blocked IFN-gamma and IL-10 cytokine secretion from infected CD4+CD25- effector T cells. Furthermore, the gene expression patterns of Tregs and effector T cells showed that 474 genes were significantly regulated during schistosomiasis. After k-means clustering, we identified genes exclusively regulated in all four populations, including Foxp3, CD103, GITR, OX40, and CTLA-4--classic Treg markers. During infection, however, several nonclassical genes were upregulated solely within the Treg population, such as Slpi, Gzmb, Mt1, Fabp5, Nfil3, Socs2, Gpr177, and Klrg1. Using RT-PCR, we confirmed aspects of the microarray data and also showed that the expression profile of Tregs from S. mansoni-infected mice is simultaneously unique and comparable with Tregs derived from other infections.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0901435DOI Listing

Publication Analysis

Top Keywords

regulatory cells
8
chronic helminth
8
helminth infection
8
gene expression
8
effector cells
8
tregs
7
cells
5
infection
5
pronounced phenotype
4
phenotype activated
4

Similar Publications

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

The kidneys have a regulatory role in many diseases with their diuresis function and capacity to maintain electrolyte balance. In case of extensive damage, the kidney's filtration capacity is impaired and cannot fulfill its functions. Fluvoxamine (FLV), an antidepressant agent, has antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production.

View Article and Find Full Text PDF

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!