Computational limits to binary genes.

J R Soc Interface

School of Computing, University of Kent, Canterbury CT2 7NF, UK.

Published: June 2010

We analyse the trade-off between the speed with which a gene can propagate information, the noise of its output and its metabolic cost. Our main finding is that for any given level of metabolic cost there is an optimal trade-off between noise and processing speed. Any system with a non-vanishing leak expression rate is suboptimal, i.e. it will exhibit higher noise and/or slower speed than leak-free systems with the same metabolic cost. We also show that there is an optimal Hill coefficient h which minimizes noise and metabolic cost at fixed speeds, and an optimal threshold K which minimizes noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871807PMC
http://dx.doi.org/10.1098/rsif.2009.0474DOI Listing

Publication Analysis

Top Keywords

metabolic cost
16
cost optimal
8
minimizes noise
8
noise
5
computational limits
4
limits binary
4
binary genes
4
genes analyse
4
analyse trade-off
4
trade-off speed
4

Similar Publications

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

Lung cancer, particularly adenocarcinoma, ranks high in morbidity and mortality rates worldwide, with a relatively low five-year survival rate. To achieve precise prognostic assessment and clinical intervention for patients, thereby enhancing their survival prospects, there is an urgent need for more accurate stratification schemes. Currently, the TNM staging system is predominantly used in clinical practice for prognostic evaluation, but its accuracy is constrained by the reliance on physician experience.

View Article and Find Full Text PDF

Cities exhibit diverse urban metabolism patterns in terms of the natural environment, industrial composition, energy, and material consumption. A chronicled city-level quantification of emergy metabolic flows over time can significantly enhance the understanding of the temporal dynamics and urban metabolism patterns, which provides critical insights for the transitions to sustainability. However, there exists no city-level urban emergy metabolism dataset in China that can support detailed spatial-temporal analysis.

View Article and Find Full Text PDF

Non-conventional yeasts: promising cell factories for organic acid bioproduction.

Trends Biotechnol

January 2025

Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains.

View Article and Find Full Text PDF

Background: The industrial production of L-threonine faces challenges because of high production costs, especially those of substrates, meaning new production methods are needed.

Methods: Fur, a new global transcription factor related to L-threonine biosynthesis, was discovered in this study. Multidimensional regulation combined with global transcriptional machinery engineering was used to modify an Escherichia coli strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!