Risk-taking behaviors involve increased motor activity and reduced anxiety in humans. Total sleep deprivation (SD) in animals produces a similar change in motor and fear behaviors. Investigators studied region-specific brain levels of glutamate in rats after TSD, an animal model of risk-taking behavior. We investigated the effects of sleep deprivation on these behaviors and associated levels of brain glutamate. Compared to the controls, the sleep-deprived rats spent a significantly greater percentage of time in the open arms of the elevated plus maze (EPM), demonstrating reduced fear-like and increased risk-taking behaviors. Additionally, sleep deprivation was associated with a significant increase in glutamate levels in the hippocampus and thalamus. An inverse relationship between glutamate in the medial prefrontal cortex and risk taking in the EPM and a positive association between the ratio of glutamate in the hippocampus to medial prefrontal cortex and risk taking was revealed. The role of sleep deprivation-induced changes in brain glutamate and its relationship to anxiety, fear, and posttraumatic stress disorder (PTSD) is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902005PMC
http://dx.doi.org/10.1016/j.physbeh.2009.12.005DOI Listing

Publication Analysis

Top Keywords

brain glutamate
12
sleep deprivation
12
glutamate relationship
8
risk-taking behavior
8
risk-taking behaviors
8
medial prefrontal
8
prefrontal cortex
8
cortex risk
8
glutamate
7
region-specific alteration
4

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Identification of a Subpopulation of Astrocyte Progenitor Cells in the Neonatal Subventricular Zone: Evidence that Migration is Regulated by Glutamate Signaling.

Neurochem Res

January 2025

Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.

In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Isolated ophthalmoplegia as an anti-glutamic acid decarboxylase 65 (anti-GAD65) antibody-associated neurological syndrome is rare. We present a case of a 22-year-old pregnant Hispanic female patient who presented initially with a left oculomotor nerve palsy following an emergency department (ED) visit for migraine headache. Brain imaging was done with no important findings.

View Article and Find Full Text PDF

Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans.

Glia

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.

Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!