The soil and moss dwelling oribatid mite family Scutoverticidae is considered to represent an assemblage of distantly related but morphologically similar genera. We used nucleotide sequences of one mitochondrial (COI) and two nuclear (28S rDNA, ef-1alpha) genes, and 79 morphological characters to elucidate the phylogenetic relationships among 11 nominal plus two undescribed European mite species of the family Scutoverticidae with a particular focus on the genus Scutovertex. Both molecular genetic and morphological data revealed a paraphyletic genus Scutovertex, with S. pictus probably representing a distinct genus, and Provertex kuehnelti was confirmed as member of the family Scutoverticidae. Molecular genetic data confirmed several recently described Scutovertex species and thus the high species diversity within this genus in Europe and suggest that S. sculptus represents a complex of several cryptic species exhibiting marked genetic, but hardly any morphological divergence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935463 | PMC |
http://dx.doi.org/10.1016/j.ympev.2009.11.025 | DOI Listing |
Hered Cancer Clin Pract
January 2025
First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
Background: Familial adenomatous polyposis (FAP) is an autosomal dominant colorectal tumour syndrome characterised by the formation of multiple adenomatous polyps throughout the colon. It is important to understand the extracolonic phenotype that characterizes FAP. Most previous case reports of patients with both FAP and intellectual disability (ID) have described deletions in all or part of chromosome 5q, including the APC locus.
View Article and Find Full Text PDFHum Genomics
January 2025
Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!