A tethering complex recruits SNAREs and grabs vesicles.

Cell

Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.

Published: December 2009

Protein tethers can bridge gaps between membranes. Ren et al. (2009) now provide evidence that the yeast Dsl1 complex tethers vesicles to the endoplasmic reticulum (ER) by binding ER SNARE proteins at its base and capturing vesicles using a loop region that extends 20 nm from the ER membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2009.11.041DOI Listing

Publication Analysis

Top Keywords

tethering complex
4
complex recruits
4
recruits snares
4
snares grabs
4
grabs vesicles
4
vesicles protein
4
protein tethers
4
tethers bridge
4
bridge gaps
4
gaps membranes
4

Similar Publications

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Benzothiazole-triazole hybrids: Novel anticancer agents inducing cell cycle arrest and apoptosis through Bcl-2 inhibition in triple-negative breast cancer.

Bioorg Chem

January 2025

Department of Chemistry, SRICT-Institute of Science and Research, UPL University of Sustainable Technology, Ankleshwar Valia Road, Vataria 393135, India. Electronic address:

In this study, we aim to detail the design and synthesis of a series of benzothiazole tethered triazole compounds that incorporate acetamide chains, with the purpose of investigating their potential as anticancer agents. The structural integrity of the compounds was confirmed through characterization using H NMR, C NMR, mass spectrometry, and IR spectroscopy. The compounds demonstrated notable cytotoxic effects when tested against a range of cancer cell lines, with a specific inhibition observed in triple-negative breast cancer.

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Substrate adaptors are flexible tethering modules that enhance substrate methylation by the arginine methyltransferase PRMT5.

J Biol Chem

January 2025

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. Electronic address:

Protein arginine methyltransferase (PRMT) 5 is an essential arginine methyltransferase responsible for the majority of cellular symmetric dimethyl-arginine (SDMA) marks. PRMT5 uses substrate adaptors such as pICln, RIOK1, and COPR5, to recruit and methylate a wide range of substrates. Although the substrate adaptors play important roles in substrate recognition, how they direct PRMT5 activity towards specific substrates remains incompletely understood.

View Article and Find Full Text PDF

Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized a click chemistry approach and preliminarily screened for cholinesterase and Aβ aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!