Transverse oscillations for tissue motion estimation.

Ultrasonics

CREATIS-LRMN, CNRS UMR5220, Inserm U630, Université de Lyon, INSA-Lyon, Université Lyon 1 - Bâtiment Blaise Pascal, 7, Avenue Jean Capelle, F-69621 Villeurbanne Cedex, France.

Published: May 2010

This paper gives an overview of the methods developed for tissue motion estimation using transverse oscillation images (TO). TO images are specific radiofrequency ultrasound images featuring oscillations in both spatial directions. The initial studies on TO were published in the late 1990s. This paper reviews the main ideas and applications behind this motion estimation approach. First the origin and motivation of TO is briefly reviewed. Then the beamforming methods that lead to TO images are given, detailing the receive-only approach and the transmit-and-receive approach using synthetic aperture data. The different medical applications where TO has been used are discussed (blood flow, elastography and echocardiography), showing how it can improve motion estimation. Finally, the future perspectives of TO are outlined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2009.11.001DOI Listing

Publication Analysis

Top Keywords

motion estimation
16
tissue motion
8
transverse oscillations
4
oscillations tissue
4
motion
4
estimation
4
estimation paper
4
paper overview
4
overview methods
4
methods developed
4

Similar Publications

OpenCap, a smartphone-based markerless system, offers a cost-effective alternative to traditional marker-based systems for gait analysis. However, its kinematic measurement accuracy must be evaluated before widespread use in clinical practice. This study aimed to evaluate OpenCap for lower-limb joint angle measurements during walking in patients with knee osteoarthritis (OA) and to compare error metrics between patients and healthy controls.

View Article and Find Full Text PDF

The traditional method is capable of detecting and tracking stationary and slow-moving targets in a sea surface environment. However, the signal focusing capability of such a method could be greatly reduced especially for those variable-speed targets. To solve this problem, a novel tracking algorithm combining range envelope alignment and azimuth phase filtering is proposed.

View Article and Find Full Text PDF

Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.

View Article and Find Full Text PDF

This study includes musculoskeletal disorder (MSD) risk evaluation based on the IMU sensor data gathered from patient-lifting movement performed by healthcare specialists. This is a continuation of previous research focusing on a novel multicriteria statistical model integrating experimental and large-scale statistical datasets. The proposed model estimates MSD probabilities over 5, 10, and 15 years for the neck (0.

View Article and Find Full Text PDF

Scarce feature points are a critical limitation affecting the accuracy and stability of incremental structure from motion (SfM) in small-scale scenes. In this paper, we propose an incremental SfM method for small-scale scenes, combined with an auxiliary calibration plate. This approach increases the number of feature points in sparse regions, and we randomly generate feature points within those areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!