Successful treatment of dilute ethylene glycol based-aircraft de-icing fluid (ADF) was achieved using a four compartment, anaerobic baffled reactor (ABR). Three ADF concentrations (0.04, 0.07, and 0.13%v/v) were continuously fed at different hydrological retention times (HRTs; 24, 12, 6 and 3h) with concomitant organic loading rates (OLRs) varying between 0.3 and 6 kg chemical oxygen demand (COD)/m(3)/d. ABR achieved over 75% soluble COD removal and an average methane production potential of 0.30+/-0.05LCH(4)/gCOD(removed) at 33 degrees C for the experimental conditions evaluated. The different experimental conditions tested and a four-month summer shut-down simulation had no significant effect on reactor performance or on the settling characteristics of the granular biomass, which remained almost constant during the study. Biomass specific acetoclastic activity however, changed through the study; increasing two fold for the last three compartments and decreasing almost the same magnitude for the first compartment compared to inoculum, suggesting that a new distribution of microbial consortia was established in each compartment of the reactor by the end of the study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.11.055DOI Listing

Publication Analysis

Top Keywords

anaerobic baffled
8
baffled reactor
8
de-icing fluid
8
granular biomass
8
experimental conditions
8
characterization anaerobic
4
reactor
4
reactor treating
4
treating dilute
4
dilute aircraft
4

Similar Publications

Ethanol fermentation of tapioca wastewater in anaerobic baffled reactor: Performance evaluation and microbial community analysis.

Bioresour Technol

January 2025

Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan.

Anaerobic treatment of tapioca wastewater has a long processing time. This study aims to evaluate ethanol fermentation as an effective treatment of tapioca wastewater. Simulated tapioca wastewater with an average chemical oxygen demand (COD) of 6900 mg L was treated in a four-column anaerobic baffled reactor for 300 d.

View Article and Find Full Text PDF

Mechanistic investigation of azo dye removal from carbon-deficient dyeing wastewater using horizontal-vertical constructed wetlands.

Chemosphere

September 2024

Department of Civil Engineering, IIT Guwahati, Guwahati, India. Electronic address:

Azo dye degradation can be achieved by simulating a series of anaerobic and aerobic conditions within the constructed wetland (CW) system. The current investigation evaluated the effectiveness of a baffled horizontal-vertical CW system, planted with Typha angustifolia, simulating anaerobic-aerobic conditions to treat carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 (RY145) azo dye. In the absence of an available carbon source in dyeing wastewater, an optimum quantity of sodium acetate was supplemented as the substrate for microbial degradation of RY145.

View Article and Find Full Text PDF

An iron-retrofitted anaerobic baffled reactor (ABR) system was developed for the effective treatment of rural wastewater with reduced maintenance demand and aeration costs. Average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus of 99.4%, 62.

View Article and Find Full Text PDF

The current study was conducted to understand the sole role of graphite as a substrate material in a dual-chambered baffled electroactive wetland (EW) in the treatment of Methyl red dye-containing wastewater. The results obtained were compared with conventional gravel-based unplanted dual-chambered constructed wetlands (CW) at a lab scale. The highest dye decolorisation and COD removal efficiency achieved was 92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!