Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.annpat.2009.10.011 | DOI Listing |
J Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China. Electronic address:
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication.
View Article and Find Full Text PDFCancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood.
View Article and Find Full Text PDFCancer Drug Resist
December 2024
School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK.
Circulating tumour cells (CTCs) can be detected in peripheral blood using their physical properties (increased size and less deformable than normal circulating blood cells) or using cell surface markers. The study of these CTCs should provide important insights into tumour biology, including mechanisms of drug resistance. We performed a pilot study (IRAS ID: 235459) to evaluate if CTCs could be isolated from peripheral blood samples collected from soft tissue sarcoma (STS) patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!