In order to mimic the biological effects of an oil spill in Arctic waters, we examined several types of biomarkers (genes, enzymes, metabolites, and DNA damage) in polar cod Boreogadus saida experimentally exposed to the water soluble fractions of crude oil. During 4 weeks of exposure, induction of the studied biomarkers exceeded baseline levels. The mRNA expression of the cytochrome P4501A1 (cyp1a1) gene was the most promising biomarker, with glutathione S-transferase (gst) as a suitable complement. The delayed ethoxyresorufin O-deethylase (EROD) and GST activities and their persistence following 2 weeks of depuration may allow detection of previous exposures in field samples. The composition of PAH metabolites in the bile indicated the bioavailability of different PAH size-classes. Although mRNA expressions of antioxidant defense genes were induced at start of the exposure, with the strongest responses from catalase and cytosolic superoxide dismutase, they were poor for oil monitoring purposes due to their very short response times. Significant DNA damage demonstrated genotoxicity even at low PAH concentrations (<15microgL(-1)) and was correlated with benzo(a)pyrene and pyrene metabolites in the bile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2009.11.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!