Background: The delta smelt (Hypomesus transpacificus) is a pelagic fish species listed as endangered under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors affecting this system, and among them, current-use insecticides are of major concern. Interrogative tools are required to successfully monitor effects of contaminants on the delta smelt, and to research potential causes of population decline in this species. We have created a microarray to investigate genome-wide effects of potentially causative stressors, and applied this tool to assess effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further investigated as molecular biomarkers using quantitative PCR analyses.

Results: Exposure to esfenvalerate affected swimming behavior of larval delta smelt at concentrations as low as 0.0625 mug.L-1, and significant differences in expression were measured in genes involved in neuromuscular activity. Alterations in the expression of genes associated with immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and development appear to have been invoked by esfenvalerate exposure. Swimming impairment correlated significantly with expression of aspartoacylase (ASPA), an enzyme involved in brain cell function and associated with numerous human diseases. Selected genes were investigated for their use as molecular biomarkers, and strong links were determined between measured downregulation in ASPA and observed behavioral responses in fish exposed to environmentally relevant pyrethroid concentrations.

Conclusions: The results of this study show that microarray technology is a useful approach in screening for, and generation of molecular biomarkers in endangered, non-model organisms, identifying specific genes that can be directly linked with sublethal toxicological endpoints; such as changes in expression levels of neuromuscular genes resulting in measurable swimming impairments. The developed microarrays were successfully applied on larval fish exposed to esfenvalerate, a known contaminant of the Sacramento-San Joaquin estuary, and has permitted the identification of specific biomarkers which could provide insight into the factors contributing to delta smelt population decline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806348PMC
http://dx.doi.org/10.1186/1471-2164-10-608DOI Listing

Publication Analysis

Top Keywords

delta smelt
24
molecular biomarkers
12
behavioral responses
8
esfenvalerate exposure
8
smelt hypomesus
8
hypomesus transpacificus
8
sacramento-san joaquin
8
joaquin estuary
8
population decline
8
larval delta
8

Similar Publications

Insights from a year of field deployments inform the conservation of an endangered estuarine fish.

Conserv Physiol

December 2024

U.S. Bureau of Reclamation Bay-Delta Office, 801 I St., Suite 140, Sacramento, CA 95814, USA.

Freshwater fishes are increasingly facing extinction. Some species will require conservation intervention such as habitat restoration and/or population supplementation through mass-release of hatchery fish. In California, USA, a number of conservation strategies are underway to increase abundance of the endangered Delta Smelt (); however, it is unclear how different estuarine conditions influence hatchery fish.

View Article and Find Full Text PDF

Coastal estuaries globally, including the San Francisco Estuary (SFE), are experiencing significant degradation, often resulting in fisheries collapses. The SFE has undergone profound modifications due to population growth, industrialization, urbanization and increasing water exports for human use. These changes have significantly altered the aquatic ecosystem, favouring invasive species and becoming less hospitable to native species such as the longfin smelt ().

View Article and Find Full Text PDF

A baseline assessment of contamination in the Sacramento deep water ship channel.

Environ Pollut

November 2024

Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA. Electronic address:

The Sacramento Deep Water Ship Channel (SDWSC) in the San Francisco Estuary, which is an active commercial port, is critical habitat for pelagic fish species including delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), and Sacramento perch (Archoplites interruptus). Pelagic organism decline has been attributed to covarying factors such as manipulation of habitat, introduction of invasive species, decrease in food production, and contaminant exposure. Quantification of bioavailable toxicant loads in the SDWSC is limited despite previous surveys that have detected elevated contaminant concentrations in the sediments.

View Article and Find Full Text PDF

A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt.

View Article and Find Full Text PDF

The big-scale sand smelt (Atherina boyeri) is an Atlanto-Mediterranean amphidromous fish species found within the Black Sea. Here, we assess differences in the parasite fauna of big-scale sand smelt populations from their natural range in the northwestern Black Sea and from their expansion range in the Lower and Middle River Dnipro. In addition, we undertook a microsatellite analysis to assess the genetic similarity of fish from the different locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!