Background: Dendritic cells (DCs) play a central role in the initiation and regulation of immune responses. DCs for clinical applications can be generated with high yield from leukapheresis products. Using adenoviral transduction we genetically modified human DCs to produce and present melanoma-associated antigens. Coexpression of green fluorescent protein and epitope tags were used to monitor genetic modification. Generation, genetic modification, and cryoconservation of gene modified human DCs on a clinical scale in a closed system is feasible.
Study Design And Methods: CD14-positive monomuclear cells were isolated from leukapheresis products of HLA-A* 0201 positive voluntary blood donors using immunomagnetic beads. Selected cells were cultivated for 7 days. Adenovirus transduction was optimal on Day 4. Maturation was induced on Day 5. Mature DC were aliquoted and cryoconserved on Day 7. Quality control was performed using flow cytometry, expression profiling, and functional assays (ELISPOT, CBA).
Results: We were able to generate sufficient genetically modified mature DCs in serum-free cultures that could be stored by cryopreservation. The use of a closed system facilitated development of methods for standardized production of clinically applicable genetically modified DCs. The adenoviral transduction system allowed simultaneous and flexible expression of tumor-associated antigens for prolonged presentation of multiple epitopes.
Conclusion: The feasibility of a closed-bag system for the cultivation of genetically modified human DCs is shown. The immature DCs were genetically modified by recombinant replication-deficient adenoviruses to express multiple epitopes of tumor-associated proteins and then differentiated to mature antigen-presenting DCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1537-2995.2009.02519.x | DOI Listing |
JAMA Netw Open
January 2025
Men's Health Inequities Research Lab, Milwaukee, Wisconsin.
Importance: Research indicates that social drivers of health are associated with cancer screening adherence, although the exact magnitude of these associations remains unclear.
Objective: To investigate the associations between individual-level social risks and nonadherence to guideline-recommended cancer screenings.
Design, Setting, And Participants: This cross-sectional study used 2022 Behavioral Risk Factor Surveillance System data from 39 US states and Washington, DC.
Alzheimers Dement
December 2024
Washington University School of Medicine, Saint Louis, MO, USA.
Background: The recent European-ancestry based genome-wide association study (GWAS) of Alzheimer disease (AD) by Bellenguez2022 has identified 75 significant genetic loci, but only a few have been functionally mapped to effector gene level. Besides the large-scale RNA expression, protein and metabolite levels are key molecular traits bridging the genetic variants to AD risk, and thus we decided to integrate them into the genetic analysis to pinpoint key proteins and metabolites underlying AD etiology. Few studies have generated more than one layer of post-transcriptional phenotypes, limiting the scale of biological translation of disease modifying treatments.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.
Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).
Alzheimers Dement
December 2024
Baylor College of Medicine, Houston, TX, USA.
Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: The Apolipoprotein E ε4 (APOE-ε4) allele is common in the population, but acts as the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Despite the strength of the association, there is notable heterogeneity in the population including a strong modifying effect of genetic ancestry, with the APOE-ε4 allele showing a stronger association among individuals of European ancestry (EUR) compared to individuals of African ancestry (AFR). Given this heterogeneity, we sought to identify genetic modifiers of APOE-ε4 related to cognitive decline leveraging APOE-ε4 stratified and interaction genome-wide association analyses (GWAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!