Background: Dendritic cells (DCs) are applied worldwide in several clinical studies of immune therapy of malignancies, autoimmune diseases, and transplantations. Most legislative bodies are demanding high standards for cultivation and transduction of cells. Closed-cell cultivating systems like cell culture bags would simplify and greatly improve the ability to reach these cultivation standards. We investigated if a new polyolefin cell culture bag enables maturation and adenoviral modification of human DCs in a closed system and compare the results with standard polystyrene flasks.

Study Design And Methods: Mononuclear cells were isolated from HLA-A*0201-positive blood donors by leukapheresis. A commercially available separation system (CliniMACS, Miltenyi Biotec) was used to isolate monocytes by positive selection using CD14-specific immunomagnetic beads. The essentially homogenous starting cell population was cultivated in the presence of granulocyte-macrophage-colony-stimulating factor and interleukin-4 in a closed-bag system in parallel to the standard flask cultivation system. Genetic modification was performed on Day 4. After induction of maturation on Day 5, mature DCs could be harvested and cryopreserved on Day 7. During the cultivation period comparative quality control was performed using flow cytometry, gene expression profiling, and functional assays.

Results: Both flasks and bags generated mature genetically modified DCs in similar yields. Surface membrane markers, expression profiles, and functional testing results were comparable. The use of a closed-bag system facilitated clinical applicability of genetically modified DCs.

Conclusions: The polyolefin bag-based culture system yields DCs qualitatively and quantitatively comparable to the standard flask preparation. All steps including cryopreservation can be performed in a closed system facilitating standardized, safe, and reproducible preparation of therapeutic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1537-2995.2009.02520.xDOI Listing

Publication Analysis

Top Keywords

cell culture
12
genetic modification
8
modification human
8
dendritic cells
8
polyolefin cell
8
culture bag
8
system
8
closed system
8
closed-bag system
8
standard flask
8

Similar Publications

Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.

View Article and Find Full Text PDF

Therapeutic effect of fully human anti-Nrp-1 antibody on non-small cell lung cancer in vivo and in vitro.

Cancer Immunol Immunother

January 2025

Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.

Although immune checkpoint inhibitors have changed the treatment paradigm for non-small cell lung cancer (NSCLC), not all patients benefit from them. Therefore, there is an urgent need to explore novel immune checkpoint inhibitors. Neuropilin-1 (Nrp-1) is a unique immune checkpoint capable of exerting antitumor effects through CD8 T cells.

View Article and Find Full Text PDF

Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!