The effect of oral amoxicillin treatment on fecal microbiota of seven healthy adult dogs was determined with a focus on the prevalence of bacterial antibiotic resistance and changes in predominant bacterial populations. After 4-7 days of exposure to amoxicillin, fecal Escherichia coli expressed resistance to multiple antibiotics when compared with the pre-exposure situation. Two weeks postexposure, the susceptibility pattern had returned to pre-exposure levels in most dogs. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations using denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S V3 rRNA gene region. Much of the variation in DGGE profiles could be attributed to dog-specific factors. However, permutation tests indicated that amoxicillin exposure significantly affected the DGGE profiles after controlling for the dog effect (P=0.02), and pre-exposure samples were clearly separated from postexposure samples. Sequence analysis of DGGE bands and real-time PCR quantification indicated that amoxicillin exposure caused a shift in the intestinal ecological balance toward a Gram-negative microbiota including resistant species in the family Enterobacteriaceae.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2009.00808.xDOI Listing

Publication Analysis

Top Keywords

bacterial populations
12
fecal microbiota
8
microbiota healthy
8
dgge profiles
8
indicated amoxicillin
8
amoxicillin exposure
8
amoxicillin
5
changes fecal
4
healthy dogs
4
dogs administered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!