UVA radiation is increasingly used to treat fibrotic skin disorders. However, the mechanisms underlying the therapeutic effects of UVA for these disorders are only partially understood. Cathepsin L is a lysosomal cysteine protease, which has been shown to degrade various matrix proteins thus contributing to extracellular remodeling. Therefore, we investigated whether UVA irradiation regulates the expression and release of cathepsin L in human dermal fibroblasts. No alterations were found after single irradiation; however, a significantly increased extracellular release of cathepsin L was observed after repeated irradiation up to four times. The transcript levels of cathepsin L were elevated after repetitive irradiation, leading to increased amounts of total cathepsin L protein. Furthermore, higher amounts of extracellular cathepsin L were associated with a significant reduction of intracellular processed cathepsin L and an accumulation of unprocessed procathepsin L. The use of specific inhibitors elucidated mannose phosphate-independent sorting pathways of cathepsin L leading to enhanced secretion and reduced intracellular processing. This is the first study which demonstrates that alternate trafficking mechanisms mediate the extracellular release of a cysteine protease induced by repetitive UVA irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0625.2009.01014.x | DOI Listing |
J Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFKidney Int
January 2025
Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Division of Kidney Disease and Hypertension, Rhode Island Hospital, the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA. Electronic address:
Melanocortin therapeutics, exemplified by adrenocorticotropic hormone, have a proven steroidogenic-independent anti-proteinuric and glomerular protective effect. The biological functions of melanocortins are mediated by melanocortin receptors (MCR), including MC1R, which recent studies have shown to protect against glomerular disease. However, the role of other MCRs like MC5R is unknown.
View Article and Find Full Text PDFViruses
December 2024
Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32608, USA.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark.
A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.
View Article and Find Full Text PDFBiomolecules
December 2024
Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece.
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid- (A) peptides. The oligomeric form of A is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides A, other proteins are co-localized within amyloid plaques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!