Amplification of interaural level differences improves sound localization in acoustic simulations of bimodal hearing.

J Acoust Soc Am

ExpORL, Department of Neurosciences, Katholieke Universiteit Leuven, O & N 2, Herestraat 49 bus 721, B-3000 Leuven, Belgium.

Published: December 2009

Users of a cochlear implant and contralateral hearing aid are sensitive to interaural level differences (ILDs). However, when using their clinical devices, most of these subjects cannot use ILD cues for localization in the horizontal plane. This is partly due to a lack of high-frequency residual hearing in the acoustically stimulated ear. Using acoustic simulations of a cochlear implant and hearing loss, it is shown that localization performance can be improved by up to 14 degrees rms error relative to 48 degrees rms error for broadband noise by artificially introducing ILD cues in the low frequencies. The algorithm that was used for ILD introduction is described.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.3243304DOI Listing

Publication Analysis

Top Keywords

interaural level
8
level differences
8
acoustic simulations
8
cochlear implant
8
ild cues
8
degrees rms
8
rms error
8
amplification interaural
4
differences improves
4
improves sound
4

Similar Publications

Objectives: Bimodal cochlear implant (CI) users vary in speech recognition outcomes. This variability may be influenced partly by the CI and contralateral hearing aid (HA) programming procedures, which can result in mismatches in latency and frequency. We assessed the performance of bimodal listeners when latency mismatches were corrected and analyzed how frequency mismatches influenced outcomes.

View Article and Find Full Text PDF

In the search for the neural correlates of auditory consciousness, a candidate has been found using electroencephalography: the auditory awareness negativity (AAN). Earlier studies have investigated the AAN in response to lateralized sound. With headphones, there is a clear lateralization of AAN when two auditory lateralization cues are combined: the interaural level difference (ILD) and interaural time difference (ITD).

View Article and Find Full Text PDF

Objectives: Musicians face an increased risk of hearing loss due to prolonged and repetitive exposure to high-noise levels. Detecting early signs of hearing loss, which are subtle and often elusive to traditional clinical tests like pure-tone audiometry, is essential. The objective of this study was to investigate the impact of noise exposure on the electrophysiological and perceptual aspects of subclinical hearing damage in young musicians with normal audiometric thresholds.

View Article and Find Full Text PDF

'Opponent channels model' (OCM) is the widely accepted model for cortical representation of sound lateralization. Stimulus-specific 'release from adaptation' (RFA) in cortical responses has been used in previous studies to test the predictions of this model. However, these attempts were shown to be prone to confounds of spurious responses such as those to auditory motion and sound onset.

View Article and Find Full Text PDF

Interaural level difference sensitivity in neonatally deafened rats fitted with bilateral cochlear implants.

Sci Rep

December 2024

Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany.

Bilateral cochlear implant (CI) patients exhibit significant limitations in spatial hearing. Their ability to process interaural time differences (ITDs) is often impaired, while their ability to process interaural level differences (ILDs) remains comparatively good. Clinical studies aiming to identify the causes of these limitations are often plagued by confounds and ethical limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!