The ultrasonic backward beam displacement, which has been shown to occur when a bounded beam is incident upon a periodically corrugated liquid-solid interface, is studied experimentally. This effect has been previously studied on a periodic water-brass interface at one particular frequency (6 MHz) and one corresponding angle of incidence (22.5 degrees), but the question has remained whether it would also exist at other frequency and angle combinations. The knowledge of whether this phenomenon is a coincidence or whether it will occur for other frequency and angle combinations contributes to a better understanding of the interaction of ultrasound with periodic structures and diffraction effects, in particular. Potential applications exist in the study of phononic crystals and in the non-destructive evaluation of materials. The present work reports results from recent experiments on the same periodically grooved brass sample that was employed in the first investigations of this phenomenon. Through the examination of frequency spectra in the form of angular and classical spectrograms, the experiments reported here show the backward beam displacement to occur for multiple angles of incidence and frequencies. Furthermore, evidence is shown as to the exact cause of the backward beam displacement, namely, a backward propagating Scholte-Stoneley wave.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.3243467 | DOI Listing |
Sci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China.
Linear optical diffraction of light is a basic natural phenomenon subject to a long history study and it obeys the well-known reciprocity in transport. In this work we report observation of synergistic nonreciprocal linear and nonlinear diffraction of a Ti:sapphire femtosecond laser beam against a periodic poled lithium niobate (PPLN) thin plate nonlinear grating with a front surface corrugated with a shallow grating of a depth only 67 nm and a smooth back surface. A high peak power pump laser beam shining upon the geometrically asymmetric nonlinear grating from either the front surface and back surface will both cause significant second-order nonlinear (2nd-NL) Raman-Nath diffraction and Cerenkov radiation, in addition to apparent linear optical diffraction and modest third-order nonlinear (3rd-NL) spectral broadening.
View Article and Find Full Text PDFNanophotonics
September 2024
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.
Achieving independent multitasked wavefront control by using an ultrathin plate is a challenge to increase information capacity in integration optics and radar applications. Transmission-reflection-integrated metasurface provides an efficient recipe primarily for multifunctional meta-device, however it is challenging to synergize both linear polarization (LP) and circular polarization (CP) using a single meta-plate. Here, a multichannel full-space coding metasurface composed of interleaved shared-aperture meta-atom is proposed to achieve large information capacity by capsulating judiciously engineered high efficiency triple sub-elements (modes) in four-layer scheme.
View Article and Find Full Text PDFJ Contemp Brachytherapy
August 2024
Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
Purpose: While the benefit of short-term androgen deprivation therapy (ADT) has been established for patients with intermediate-risk (IR) prostate cancer (PCa) receiving dose-escalated external beam radiation therapy (EBRT), the role of ADT for patients treated with brachytherapy (BT) with or without supplemental EBRT (sEBRT) is less clear.
Material And Methods: We conducted a single-institution retrospective analysis of men with National Comprehensive Cancer Network (NCCN) unfavorable IR (UIR) PCa. All patients received BT with or without sEBRT, and were stratified by the receipt of 4-6 months of ADT.
Micromachines (Basel)
October 2024
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
A photonic lantern is a low-loss device that connects a single multimode waveguide to multiple single-mode waveguides and can enhance the beam quality of a fiber laser by adaptively controlling the optical parameters (amplitude, phase, polarization) at the input. In this work, we combined the gains and losses of individual modes within the fiber amplifier and introduced a mode content parameter at the amplifier's output as an evaluation function to simulate mode control effects. Mode competition within the gain fiber can degrade the control effect of the fundamental mode and lead to it taking a longer time for the control to converge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!