A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic recognition of fin and blue whale calls for real-time monitoring in the St. Lawrence. | LitMetric

Automatic recognition of fin and blue whale calls for real-time monitoring in the St. Lawrence.

J Acoust Soc Am

Marine Sciences Institute, University of Quebec at Rimouski, 310 Allee des Ursulines, Rimouski, Quebec G5L-3A1, Canada.

Published: December 2009

Monitoring blue and fin whales summering in the St. Lawrence Estuary with passive acoustics requires call recognition algorithms that can cope with the heavy shipping noise of the St. Lawrence Seaway and with multipath propagation characteristics that generate overlapping copies of the calls. In this paper, the performance of three time-frequency methods aiming at such automatic detection and classification is tested on more than 2000 calls and compared at several levels of signal-to-noise ratio using typical recordings collected in this area. For all methods, image processing techniques are used to reduce the noise in the spectrogram. The first approach consists in matching the spectrogram with binary time-frequency templates of the calls (coincidence of spectrograms). The second approach is based on the extraction of the frequency contours of the calls and their classification using dynamic time warping (DTW) and the vector quantization (VQ) algorithms. The coincidence of spectrograms was the fastest method and performed better for blue whale A and B calls. VQ detected more 20 Hz fin whale calls but with a higher false alarm rate. DTW and VQ outperformed for the more variable blue whale D calls.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.3257588DOI Listing

Publication Analysis

Top Keywords

whale calls
16
blue whale
12
calls
8
coincidence spectrograms
8
automatic recognition
4
recognition fin
4
blue
4
fin blue
4
whale
4
calls real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!