Currently, a number of in vitro methods are in use worldwide to assess arsenic (As) bioaccessibility in soils. However, a dearth of research has been undertaken to compare the efficacy of the in vitro methods for estimating in vivo relative As bioavailability. In this study, As bioaccessibility in contaminated soils (n = 12) was assessed using four in vitro assays (SBRC, IVG, PBET, DIN). In vitro results were compared to in vivo relative As bioavailability data (swine assay) to ascertain which methodologies best correlate with in vivo data. Arsenic bioaccessibility in contaminated soils varied depending on the in vitro method employed. For the SBRC and IVG methods, As bioaccessibility generally decreased when gastric-phase values were compared to the intestinal phase. In contrast, extending the PBET and DIN assays from the gastric to the intestinal phase resulted in an increase in As bioaccessibility for some soils tested. Comparison of in vitro and in vivo results demonstrated that the in vitro assay encompassing the SBRC gastric phase provided the best prediction of in vivo relative As bioavailability (R(2) = 0.75, Pearson correlation = 0.87). However, relative As bioavailability could also be predicted using gastric or intestinal phases of IVG, PBET, and DIN assays but with varying degrees of confidence (R(2) = 0.53-0.67, Pearson correlation = 0.73-0.82).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es902427y | DOI Listing |
Curr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
Front Parasitol
April 2024
National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China.
Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin - Madison Madison Wisconsin 53706 USA
Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.
View Article and Find Full Text PDFClin Implant Dent Relat Res
February 2025
Department of Oral Surgery and Implantology, Goethe University, Frankfurt am Main, Germany.
Objectives: This preclinical ex vivo porcine study aimed to evaluate the effects of two flap advancement techniques and periosteal suturing (PS) on graft material displacement during primary wound closure in guided bone regeneration (GBR). Secondary objectives included assessing flap advancement and the impact of soft tissue characteristics on graft displacement.
Materials And Methods: Standardized two-walled horizontal bone defects were created in second premolar sites of pig hemimandibles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!