This study combined chemical analysis and bioassays of paper mill effluents and their components in order to determine their antiestrogenic activity. The bioassay comprised a yeast two-hybrid assay incorporating the estrogen receptor alpha (hERalpha) and an hERalpha competitive enzyme-linked immunosorbent assay (ELISA). Samples were fractionated by solid phase extraction (SPE) with a C18 disk and a Florisil cartridge to obtain four fractions. The final fraction, eluted with methanol from the Florisil cartridge after pre-extraction by the C18 disk, was the most active in the two-hybrid assay, and its antiestrogenic potency, expressed as the equivalent concentration to 4-hydroxytamoxifen (OHT), was 277 nM. Seven resin acids had antiestrogenic activity in the active fraction as determined by gas chromatography/mass spectrometry (GC/MS), and their concentration levels ranged from 0.11 to 12 microg/L. All the resin acids exhibited greater activity than OHT; their activity relative to OHT ranged from 2.8- to 4.0-fold in the yeast two-hybrid assay. Based on the chemical analysis data and relative potency of resin acids from the yeast two-hybrid assay, the contribution ratio of resin acids accounted for 72% of the observed antiestrogenic activity of the extract. Furthermore, no resin acid showed any affinity for the estrogen receptor in the ELISA. This study showed that analysis combining the SPE method and the yeast two-hybrid assay is likely to be effective for the comprehensive monitoring of resin acids in paper mill industrial discharge areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es9025479 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!