Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pure EuC(2), free of EuO impurities, was obtained by the reaction of elemental europium with graphite at 1673 K. By means of synchrotron powder diffraction experiments, the structural behavior was investigated in the temperature range from 10 to 1073 K. In contrast to former results, EuC(2) crystallizes in the ThC(2) type structure (C2/c, Z = 4) at room temperature. A tetragonal modification (I4/mmm, Z = 2) is only observed in a very small temperature range just below the transition to a cubic high-temperature modification (Fm3m, Z = 4) at 648 K. DTA/TG investigations confirm these results. According to Raman spectroscopy, EuC(2) contains C(2)(2-) ions (nu(C[triple bond]C) = 1837 cm(-1)). The divalent character of Eu is confirmed by the results of magnetic susceptibility measurements and (151)Eu Mossbauer spectroscopy. In these measurements a transition to a ferromagnetic state with T(C) = 15 K is observed, which is in reasonable agreement with literature data. Above T(C) EuC(2) is a semiconductor according to measurements of the electric resistivity vs temperature, again in contrast to former results. Around T(C) a sharp maximum of the electric resistivity vs temperature curve was observed, which collapses on applying external magnetic fields. The observed CMR effect (colossal magnetoresistance) is much stronger than that reported for other EuC(2) samples in the literature. These investigations explicitly show the influence of sample purity on the physical and even structural properties of EuC(2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic901979v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!