Background: Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping.
Methodology/principal Findings: To correct SMN2 splicing, we use Adenovirus type 5-derived vectors to express SMN2-antisense U7 snRNA oligonucleotides targeting the SMN intron 7/exon 8 junction. Infection of SMA type I-derived patient fibroblasts with these vectors resulted in increased levels of exon 7 inclusion, upregulating the expression of SMN to similar levels as in non-SMA control cells.
Conclusions/significance: These results show that Adenovirus type 5-derived vectors delivering U7 antisense oligonucleotides can efficiently restore full-length SMN protein and suggest that the viral vector-mediated oligonucleotide application may be a suitable therapeutic approach to counteract SMA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781471 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008204 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!