Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An optical dipole nano-antenna can be constructed by placing a sub-wavelength dielectric (e.g., air) gap between two metallic regions. For typical applications using light in the infrared region, the gap width is generally in the range between 50 and 100 nm. Owing to the close proximity of the electrodes, these antennas can generate very intense electric fields that can be used to excite nonlinear effects. For example, it is possible to trigger surface Raman scattering on molecules placed in the vicinity of the nano-antenna, allowing the fabrication of biological sensors and imaging systems in the nanometric scale. However, since nano-antennas are passive devices, they need to receive light from external sources that are generally much larger than the antennas. In this article, we numerically study the coupling of light from microdisk lasers into plasmonic nano-antennas. We show that, by using micro-cavities, we can further enhance the electric fields inside the nano-antennas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.17.020878 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!