Succinic acid was produced by continuous fermentation of Actinobacillus succinogenes sp. 130Z in an external membrane cell recycle reactor to improve viable cell concentration and productivity. Using this system, cell concentration increased to 16.4 g/l at the dilution rate 0.2 h-1, up to 3 times higher than that of batch culture, and the volumetric productivity of succinic acid increased up to 6.63 g/l/h at the dilution rate 0.5 h-1, 5 times higher than that of batch fermentation. However, in the continuous culture using a high dilution rate, operational problems including severe membrane fouling and contamination by lactic acid producer were observed. Another succinic acid producer, Mannheimia succiniciproducens MBEL55E, was also utilized in this system, and the cell concentration and productivity of succinic acid at the dilution rate of 0.3 h-1 were found to be above 3 and 2.3 times higher, respectively, compared with those obtained at the dilution rate of 0.1 h-1. These observations give a deep insight into the process design for a continuous succinic acid production by microorganisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

succinic acid
24
dilution rate
20
rate h-1
16
cell concentration
12
h-1 times
12
times higher
12
external membrane
8
membrane cell
8
cell recycle
8
concentration productivity
8

Similar Publications

In the context of organic farming, the introduction of a local product to wider markets and an evaluation of storage effects, metabolic and transcriptomic variations in two broccoli rabe genotypes from production cycles of two different years were studied by comparing florets of stored fresh (SF) and packaged (P) for 4 days with those harvested fresh from the field (H). Twenty-five hydrosoluble compounds, including amino acids, carbohydrates, and organic acids, were quantified by untargeted nuclear magnetic resonance (NMR). Principal component analysis produced a neat separation among the three commodity statuses with P being the most divergent and SF closer to H.

View Article and Find Full Text PDF

A study on the qualitative analysis of lotus seedpod oligomeric procyanidins during digestion, absorption and colonic fermentation based on UPLC-Q-Exactive/MS.

Food Chem

January 2025

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China. Electronic address:

Polyphenols have potent antioxidant properties, but are easily degraded in the gastrointestinal tract, greatly limiting their application as dietary supplements. Therefore, the composition changes of lotus seedpod oligomeric procyanidins (LSOPC) in the gastrointestinal digestion, colonic fermentation and their absorption in Caco-2 cell monolayer were studied. The extracted LSOPC were identified using UPLC-Q-Exactive/MS, and a total of 47 compounds were identified.

View Article and Find Full Text PDF

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA).

View Article and Find Full Text PDF

Intermetallic RNiSi (R = Ca, La, and Y) Catalysts with Electron-Rich Ni Sites for Continuous Flow Selective Hydrogenation of Maleic Anhydride.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!