Cerebrospinal fluid steroidomics: are bioactive bile acids present in brain?

J Biol Chem

Institute of Mass Spectrometry, School of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom.

Published: February 2010

In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C(27) and C(24) intermediates of the bile acid biosynthetic pathways with structures corresponding to 7alpha-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 +/- 2.826 ng/ml, mean +/- S.D., six subjects), 3beta-hydroxycholest-5-en-26-oic acid (0.416 +/- 0.193 ng/ml), 7alpha,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 +/- 0.543 ng/ml), and 7alpha-hydroxy-3-oxochol-4-en-24-oic acid (0.172 +/- 0.085 ng/ml), and the C(26) sterol 7alpha-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 +/- 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3beta-hydroxycholest-5-en-26-oic acid and 3beta,7alpha-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7alpha-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7Alpha-hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3beta,7alpha-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3beta-hydroxy-Delta(5)-C(27)-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239-248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836072PMC
http://dx.doi.org/10.1074/jbc.M109.086678DOI Listing

Publication Analysis

Top Keywords

cholesterol metabolites
12
7alpha-hydroxy-3-oxocholest-4-en-26-oic acid
12
acid
11
cerebrospinal fluid
8
intermediates bile
8
bile acid
8
acid biosynthetic
8
biosynthetic pathways
8
3beta-hydroxycholest-5-en-26-oic acid
8
3beta7alpha-dihydroxycholest-5-en-26-oic acid
8

Similar Publications

Application Value of STOP-Bang Questionnaire in Predicting Abnormal Metabolites.

Diabetes Metab Syndr Obes

January 2025

Department of Ear, Nose and Throat, Beijing Hepingli Hospital, Beijing, People's Republic of China.

Objective: To evaluate the application value of STOP-Bang questionnaire (SBQ) in predicting abnormal metabolites.

Methods: Totally 121 patients were included into the study and filled the questionnaires, and their clinical data were collected at the same time. These patients were grouped according to the questionnaire scores.

View Article and Find Full Text PDF

Ganoderma lucidum is a traditional Chinese medicine used to treat Alzheimer's disease (AD), whose main active ingredient is polysaccharides. A heteropolysaccharide named GLPZ-1 was isolated from Ganoderma lucidum. GLPZ-1 (6.

View Article and Find Full Text PDF

Application of a dynamic colonic gastrointestinal digestion model to red wines: a study of flavanol metabolism by the gut microbiota and the cardioprotective activity of microbial metabolites.

Food Funct

January 2025

Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.

Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.

View Article and Find Full Text PDF

Cotinine, trans-3'-hydroxycotinine, and nicotine metabolite ratio indicate association between smoking and tooth loss.

J Periodontol

January 2025

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Background: Previous research has indicated a potential connection between smoking and tooth loss, but it remains unclear how the metabolites of nicotine, cotinine (COT) and trans-3'-hydroxycotinine (HC), and the nicotine metabolite ratio (NMR) affect the occurrence and progress of tooth loss. In this study, we aimed to investigate the relationship between tooth loss and smoking metabolites, then verify how the systemic immunoinflammatory index (SII) or monocyte to high-density lipoprotein cholesterol ratio (MHR) levels mediate this process.

Methods: The cross-sectional study data were collected from the National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

Integrated electronic nose and multi-omics reveal changes in flavour characterization of cashmere goats and tan sheep meat.

Food Chem X

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.

This study aimed to employ a multi-omics method to identify key compounds contributing to the sensory flavour of mutton and to investigate the internal correlation between volatile metabolites and lipids in Cashmere goats and Tan sheep. The results demonstrate that the electronic nose can effectively and quickly distinguish goats and sheep meat. A total of 18 volatile metabolites and 314 lipids were identified as significant contributors to the flavour difference between goats and sheep meat, as determined by HS-SPME-GC-MS and lipidomic respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!