Fibrinolysis and pericellular proteolysis depend on molecular coassembly of plasminogen and its activator on cell, fibrin, or matrix surfaces. We report here the existence of a fibrinolytic cross-talk mechanism bypassing the requirement for their molecular coassembly on the same surface. First, we demonstrate that, despite impaired binding of Glu-plasminogen to the cell membrane by epsilon-aminocaproic acid (epsilon-ACA) or by a lysine-binding site-specific mAb, plasmin is unexpectedly formed by cell-associated urokinase (uPA). Second, we show that Glu-plasminogen bound to carboxy-terminal lysine residues in platelets, fibrin, or extracellular matrix components (fibronectin, laminin) is transformed into plasmin by uPA expressed on monocytes or endothelial cell-derived microparticles but not by tissue-type plasminogen activator (tPA) expressed on neurons. A 2-fold increase in plasmin formation was observed over activation on the same surface. Altogether, these data indicate that cellular uPA but not tPA expressed by distinct cells is specifically involved in the recognition of conformational changes and activation of Glu-plasminogen bound to other biologic surfaces via a lysine-dependent mechanism. This uPA-driven cross-talk mechanism generates plasmin in situ with a high efficiency, thus highlighting its potential physiologic relevance in fibrinolysis and matrix proteolysis induced by inflammatory cells or cell-derived microparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896557PMC
http://dx.doi.org/10.1182/blood-2009-06-228817DOI Listing

Publication Analysis

Top Keywords

cross-talk mechanism
12
fibrinolytic cross-talk
8
plasmin formation
8
molecular coassembly
8
plasminogen activator
8
glu-plasminogen bound
8
cell-derived microparticles
8
tpa expressed
8
plasmin
5
mechanism
4

Similar Publications

Background: Gastric cancer (GC) ranks fourth in global mortality rates and fifth in prevalence, making it one of the most common cancers worldwide. Recent clinical studies have highlighted the potential of immunotherapies as a promising approach to treating GC. This study aims to shed light on the most impactful therapeutic strategies in the context of GC immunotherapy, highlighting both established and emerging approaches.

View Article and Find Full Text PDF

Purpose: To investigate the effects of C-type natriuretic peptide (CNP) on human granulosa cell growth and elucidate its regulatory mechanisms.

Methods: A human non-luteinizing granulosa cell line (HGrC) developed from small antral follicles was used to assess the impact of CNP on cell proliferation and estrogen synthesis. cGMP production via the guanylate cyclase domain of the CNP receptor, natriuretic peptide receptor 2 (NPR2), was confirmed.

View Article and Find Full Text PDF

Triple-positive breast cancer (TPBC), defined by the co-expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), poses unique therapeutic challenges due to complex signaling interactions and resulting treatment resistance. This review summarizes key findings on the molecular mechanisms and cross-talk among ER, PR, and HER2 pathways, which drive tumor proliferation and resistance to conventional therapies. Current strategies in TPBC treatment, including endocrine and HER2-targeted therapies, are explored alongside emerging approaches such as immunotherapy and CRISPR/Cas9 gene editing.

View Article and Find Full Text PDF

As obligate parasites, viruses exploit host cell organelles and molecular components to complete their life cycle. Among which, viruses firstly hijack the cytoskeleton of host cells to ensure their efficiently cell entry and replication. Although formin family members play a key role in both microfilament and microtubule cytoskeletal remodeling, few studies addressed the detailed function and mechanism of formins in the process of viral infection.

View Article and Find Full Text PDF

The neonate respiratory microbiome.

Acta Physiol (Oxf)

February 2025

Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.

Over the past two decades, it has become clear that against earlier assumptions, the respiratory tract is regularly populated by a variety of microbiota even down to the lowest parts of the lungs. New methods and technologies revealed distinct microbiome compositions and developmental trajectories in the differing parts of the respiratory tract of neonates and infants. In this review, we describe the current understanding of respiratory microbiota development in human neonates and highlight multiple factors that have been identified to impact human respiratory microbiome development including gestational age, mode of delivery, diet, antibiotic treatment, and early infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!