The traditional site-directed spin labeling (SDSL) method, which utilizes cysteine residues and sulfhydryl-reactive nitroxide reagents, can be challenging for proteins that contain functionally important native cysteine residues or disulfide bonds. To make SDSL amenable to any protein, we introduce an orthogonal labeling strategy, i.e., one that does not rely on any of the functional groups found in the common 20 amino acids. In this method, the genetically encoded unnatural amino acid p-acetyl-L-phenylalanine (p-AcPhe) is reacted with a hydroxylamine reagent to generate a nitroxide side chain (K1). The utility of this scheme was demonstrated with seven mutants of T4 lysozyme, each containing a single p-AcPhe at a solvent-exposed helix site; the mutants were expressed in amounts qualitatively similar to the wild-type protein. In general, the EPR spectra of the resulting K1 mutants reflect higher nitroxide mobilities than the spectra of analogous mutants containing the more constrained disulfide-linked side chain (R1) commonly used in SDSL. Despite this increased flexibility, site dependence of the EPR spectra suggests that K1 will be a useful sensor of local structure and of conformational changes in solution. Distance measurements between pairs of K1 residues using double electron electron resonance (DEER) spectroscopy indicate that K1 will also be useful for distance mapping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799802 | PMC |
http://dx.doi.org/10.1073/pnas.0912009106 | DOI Listing |
Curr Opin Chem Biol
December 2024
BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK. Electronic address:
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), combined with site-directed spin-labelling, represents a powerful tool for the investigation of biomacromolecules, emerging as a keystone approach in structural biology. Increasingly, PDS is applied to study highly complex integral membrane protein systems, such as mechanosensitive ion channels, transporters, G-protein coupled receptors, ion pumps, and outer membrane proteins elucidating their dynamics and revealing conformational ensembles. Indeed, PDS offers a platform to study intermediate or lowly-populated states that are otherwise invisible to other modern methods, such as X-ray crystallography, cryo-EM, and hydrogen-deuterium exchange-mass spectrometry.
View Article and Find Full Text PDFAnnu Rev Biophys
December 2024
Department of Chemistry, University of Washington, Seattle, Washington, USA; email:
Double electron-electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling.
View Article and Find Full Text PDFProtein Sci
December 2024
Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the timescale of ps-μs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of μs-ms, corresponding to large-scale protein motions, is inaccessible to those methods.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2024
Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA; Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany.
Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!