Lipoxygenases (LOXs, EC 1.13.11.12) are a class of non-heme iron containing dioxygenases which catalyze the regiospecific and stereospecific hydroperoxidation of polyunsaturated fatty acids with 1,4-pentadiene system such as linoleic acid and linolenic acid in plants. In this work we studied the LOX activity in damaged as well as in distal leaves in response to specialist (Agraulis vanillae vanillae) or generalist (Spodoptera frugiperda) insect attack. Enzymatic assays showed that induction of LOX activity occurred locally and systemically in response to both insects' attacks. Northern blot analysis revealed that LOX expression is also insect-inducible in agreement with enzymatic assay results. In addition, northern analysis corroborated previous reports that LOX activity is wound- and methyl jasmonate-inducible. These results suggest that the herbivore-response in passion fruit is mediated by jasmonates, since a key enzyme of the biosynthetic pathway of jasmonic acid is induced upon lepidopteran insects' attacks.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986610790963744DOI Listing

Publication Analysis

Top Keywords

lox activity
12
passion fruit
8
insect attack
8
insects' attacks
8
herbivore response
4
response passion
4
fruit passiflora
4
passiflora edulis
4
edulis sims
4
sims plants
4

Similar Publications

Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway.

Sci Rep

January 2025

Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.

Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect.

View Article and Find Full Text PDF

Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.

View Article and Find Full Text PDF

Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes.

Mater Horiz

January 2025

Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.

The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.

View Article and Find Full Text PDF

Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.

View Article and Find Full Text PDF

Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!