Photophysics and binding constant determination of the homodimeric dye BOBO-3 and DNA oligonucleotides.

J Phys Chem B

Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain.

Published: January 2010

The interactions between single- and double-stranded DNA and the trimethine cyanine homodimer dye, BOBO-3 (1,1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene]pyridinium tetraiodide), have been investigated in detail using absorption and steady-state and time-resolved fluorescence spectroscopy. The dye interacts with both single-stranded and double-stranded DNA, under a variety of conditions, with changes in its spectral characteristics. Our results indicated that the complex formed between BOBO-3 dye and DNA oligonucleotides could not be explained with a simple, single intercalation mechanism; therefore, different modes of interaction were proposed. By using time-resolved fluorescence methodology and in-depth analysis of the fluorescence decay traces, we obtained the contribution of the different forms of BOBO-3: free in solution, a low affinity, electrostatically driven interaction with DNA, and a full bis-intercalation mechanism within the DNA double helix. With this information, we applied the McGhee-Von Hippel theory for two overlapping, noncooperative binding modes to obtain equilibrium binding constants and the number of sites occupied for each binding mode. Binding constants for dye/dsDNA complexes in complete bis-intercalation and externally bound were (8.8 +/- 1.1) x 10(5) and (2.6 +/- 0.3) x 10(5) M(-1), respectively. The corresponding recovered number of base pairs covered were 5.9 +/- 0.2 and 3.5 +/- 0.5 sites for each mode.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp909863cDOI Listing

Publication Analysis

Top Keywords

dye bobo-3
8
dna oligonucleotides
8
double-stranded dna
8
time-resolved fluorescence
8
binding constants
8
+/- 105
8
dna
6
photophysics binding
4
binding constant
4
constant determination
4

Similar Publications

Global hypomethylation of genomic DNA is associated with genomic instability and carcinogenic processes. The loss of DNA methylation has been reported in several cancers; therefore, global methylation levels have been considered as biomarkers for cancer diagnosis. Bisulfite conversion analysis has been widely used as the gold standard method for quantification of DNA methylation levels.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) plays an important role in the regulation of gene expression. Ten-eleven translocation (TET) continuously oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). High levels of 5hmC are found in the brain and embryonic stem cells, while global hydroxymethylation levels are reduced in several cancer cells.

View Article and Find Full Text PDF

Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation.

Anal Bioanal Chem

July 2019

Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.

Abnormal DNA methylations such as hypermethylation on tumor suppressor genes and global hypomethylation have been recognized as hallmarks of cancer. Previously, we reported a bioluminescence resonance energy transfer (BRET)-based global DNA methylation level assay using a methyl-CpG-binding domain-fused firefly luciferase (MBD-Fluc) and unmethylated CpG-binding domain-fused firefly luciferase (CXXC-Fluc). The BRET signal between MBD-Fluc and BOBO-3 DNA intercalating dye depends on the methylated CpG contents, whereas the BRET signal between CXXC-Fluc and BOBO-3 depends on the unmethylated CpG contents.

View Article and Find Full Text PDF

The activity-regulated cytoskeleton associated protein Arc is strongly and quickly upregulated by neuronal activity, synaptic potentiation and learning. Arc entry in the synapse is followed by the endocytosis of glutamatergic AMPA receptors (AMPARs), and its nuclear accumulation has been shown to result in a small decline in the transcription of the GluA1 subunit of AMPARs. Since these effects result in a decline in synaptic strength, we asked whether a change in Arc dynamics may temporally correlate with sleep-dependent GluA1 down-regulation.

View Article and Find Full Text PDF

Optical mapping, a single DNA molecule genome analysis platform that can determine methylation profiles, uses fluorescently labeled DNA molecules that are elongated on the surface and digested with a restriction enzyme to produce a barcode of that molecule. Understanding how the cyanine fluorochromes affect enzyme activity can lead to other fluorochromes used in the optical mapping system. The effects of restriction digestion on fluorochrome labeled DNA (Ethidium Bromide, DAPI, H33258, EthD-1, TOTO-1) have been analyzed previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!