Using an interdisciplinary approach, the current position in the dental amalgam controversy and the potential impact of amalgam mercury on human health are reviewed. Aspects of materials science, corrosion, mercury exposure, toxicology, neurology and immunology are included. New data on mercury exposure from corroded amalgam fillings in vivo are presented. The exposure can reach levels considerably over known threshold limit values. Also, measurements of mercury absorption from intraoral air are presented. The vital importance of avoiding a galvanic amalgam-gold coupling is emphasized. The symptomatology of a disabled patient, who recovered after amalgam removal, has been included. It is concluded that discussion of the dental amalgam issue has suffered from the lack of an interdisciplinary approach. It would be wise to learn from the lesson of acrodynia, and consider amalgam mercury among other possible factors in neurological and immunological diseases of unclear etiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02041243 | DOI Listing |
Curr Med Chem
January 2025
Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
Mercury is a pervasive global pollutant, with primary anthropogenic sources including mining, industrial processes, and mercury-containing products such as dental amalgams. These sources release mercury into the environment, where it accumulates in ecosystems and enters the food chain, notably through bioamplification in marine life, posing a risk to human health. Dental amalgams, widely used for over a century, serve as a significant endogenous source of inorganic mercury.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON, M5G 1G6, Canada.
Dental resin-based restorative (RBR) materials represent the most ubiquitous biomaterials utilized globally. Methacrylate (MA)-ester based monomers - present in RBRs since the 1960s - experience significantly elevated rates of failure compared to previously used silver/amalgam fillings attributed to their hydrolysis reported in both simulated and in vivo environments. There is currently no alternative RBR chemistry that matches the functional and clinical workflow considerations of MA-RBRs while addressing their limited-service lives.
View Article and Find Full Text PDFImaging Sci Dent
December 2024
Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
Purpose: This study was performed to evaluate the expression of beam hardening artifacts generated by high atomic number materials in stitched cone-beam computed tomography (CBCT) images, compared to the traditional acquisition mode.
Materials And Methods: CBCT volumes were acquired using an acrylic resin phantom embedded with pairs of cylinders made from amalgam dental alloy, cobalt-chromium alloy, gutta-percha, titanium, and zirconium. These cylinders were placed within the overlapping zones of the stitching reconstruction area.
Occup Med (Lond)
January 2025
Faculty of Medicine, Department of Preventive and Social Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Dental professionals who handle dental amalgam are at risk of mercury exposure, though the prevalence and severity of elevated mercury levels from non-occupational sources are not well characterized. We report two dental workers who had elevated urinary mercury levels (37 and 25.6 mcg/L) during routine health screenings.
View Article and Find Full Text PDFBiomater Investig Dent
October 2024
Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
The placement of root filling materials aims to prevent the occurrence of post-treatment apical periodontitis following completion of endodontic treatment. Materials should possess properties that will not permit bacterial invasion and infection, namely excellent sealing ability and/or antibacterial properties. In root-end filling procedures or repair of root perforations, the root filling materials are placed in a particularly challenging clinical environment, as they interface with a relatively large area with the periradicular tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!