AI Article Synopsis

  • The rapid global increase in mobile phone usage has sparked concerns about the potential biological effects of electromagnetic field (EMF) exposure on the brain and nervous system.
  • Changes in calcium homeostasis due to radiofrequency (RF) radiation exposure may affect the expression of calcium binding proteins (CB and CR), which are crucial for maintaining cellular function.
  • Immunohistochemical analyses in a study showed significant alterations in calcium binding protein levels in mouse hippocampal cells following various EMF exposure conditions, with a notable loss of pyramidal cells after one month of exposure.

Article Abstract

Worldwide expansion of mobile phones and electromagnetic field (EMF) exposure has raised question of their possible biological effects on the brain and nervous system. Radiofrequency (RF) radiation might alter intracellular signaling pathways through changes in calcium (Ca(2+)) permeability across cell membranes. Changes in the expression of calcium binding proteins (CaBP) like calbindin D28-k (CB) and calretinin (CR) could indicate impaired Ca(2+)homeostasis due to EMF exposure. CB and CR expression were measured with immunohistochemistry in the hippocampus of mice after EMF exposure at 835 MHz for different exposure times and absorption rates, 1 h/day for 5 days at a specific absorption rate (SAR)=1.6 W/kg, 1 h/day for 5 days at SAR=4.0 W/kg, 5 h/day for 1 day at SAR=1.6 W/kg, 5 h/day for 1 day at SAR=4.0 W/kg, daily exposure for 1 month at SAR=1.6 W/kg. Body weights did not change significantly. CB immunoreactivity (IR) displayed moderate staining of cells in the cornu ammonis (CA) areas and prominently stained granule cells. CR IR revealed prominently stained pyramidal cells with dendrites running perpendicularly in the CA area. Exposure for 1 month produced almost complete loss of pyramidal cells in the CA1 area. CaBP differences could cause changes in cellular Ca(2+)levels, which could have deleterious effect on normal hippocampal functions concerned with neuronal connectivity and integration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.11.079DOI Listing

Publication Analysis

Top Keywords

emf exposure
12
sar=16 w/kg
12
w/kg h/day
12
835 mhz
8
radiofrequency radiation
8
calcium binding
8
binding proteins
8
h/day days
8
sar=40 w/kg
8
h/day day
8

Similar Publications

A review of effects of electromagnetic fields on ageing and ageing dependent bioeffects of electromagnetic fields.

Sci Total Environ

February 2025

Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 310030, Hangzhou, China. Electronic address:

Thanks to the progress of science and technology, human life expectancy has dramatically increased in the past few decades, but accompanied by rapid ageing of population, resulting in increased burden on society. At the same time, the living environment, especially the electromagnetic environment, has also greatly changed due to science and technology advances. The effect of artificial electromagnetic fields (EMFs) emitted from power lines, mobile phones, wireless equipment, and other devices on ageing and ageing-related diseases are receiving increasing attention.

View Article and Find Full Text PDF

In this paper, we present the design, RF-EMF performance, and a comprehensive uncertainty analysis of the reverberation chamber (RC) exposure systems that have been developed for the use of researchers at the University of Wollongong Bioelectromagnetics Laboratory, Australia, for the purpose of investigating the biological effects of RF-EMF in rodents. Initial studies, at 1950 MHz, have focused on investigating thermophysiological effects of RF exposure, and replication studies related to RF-EMF exposure and progression of Alzheimer's disease (AD) in mice predisposed to AD. The RC exposure system was chosen as it allows relatively unconstrained movement of animals during exposures which can have the beneficial effect of minimizing stress-related, non-RF-induced biological and behavioral changes in the animals.

View Article and Find Full Text PDF

The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).

View Article and Find Full Text PDF

Aim: Nowadays, the electromagnetic field (EMF) has become an issue of electromagnetic pollution. This study aimed to determine the effect of 5 G Fr1 frequency band EMF waves on endoplasmic reticulum (ER) stress in testicular tissue and to demonstrate the efficacy of coenzyme Q10 (CoQ10) in suppressing the potential situation.

Materials And Methods: Three groups of eight male Sprague-Dawley rats were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!