The combination of a polyacridine peptide modified with a melittin fusogenic peptide results in a potent gene transfer agent. Polyacridine peptides of the general formula (Acr-X)(n)-Cys were prepared by solid-phase peptide synthesis, where Acr is Lys modified on its epsilon-amine with acridine, X is Arg, Leu, or Lys and n is 2, 3, or 4 repeats. The Cys residue was modified by either a maleimide-melittin or a thiolpyridine-Cys-melittin fusogenic peptide resulting in reducible or non-reducible polyacridine-melittin peptides. Hemolysis assays established that polyacridine-melittin peptides retained their membrane lytic potency relative to melittin at pH 7.4 and 5. When combined with plasmid DNA, the membrane lytic potency of polyacridine-melittin peptides was neutralized. Gene transfer experiments in multiple cell lines established that polyacridine-melittin peptides mediate expression as efficiently as PEI. The expression was very dependent upon a disulfide bond linking polyacridine to melittin. The gene transfer was most efficient when X is Arg and n is 3 or 4 repeats. These studies establish polyacridine peptides as a novel DNA binding anchor peptide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813064 | PMC |
http://dx.doi.org/10.1021/bc9003124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!