Multipotent mesenchymal stromal cells (MSCs) represent a rare heterogeneous subset of pluripotent stromal cells that can be isolated from many different adult tissues that exhibit the potential to give rise to cells of diverse lineages. Numerous studies have reported beneficial effects of MSCs in tissue repair and regeneration. After culture expansion and in vivo administration, MSCs home to and engraft to injured tissues and modulate the inflammatory response through synergistic downregulation of proinflammatory cytokines and upregulation of both prosurvival and antiinflammatory factors. In addition, MSCs possess remarkable immunosuppressive properties, suppressing T-cell, NK cell functions, and also modulating dentritic cell activities. Tremendous progress has been made in preclinical studies using MSCs, including the ability to use allogeneic cells, which has driven the application of MSCs toward the clinical setting. This review highlights our current understanding into the biology of MSCs with particular emphasis on the cardiovascular and renal applications, and provides a brief update on the clinical status of MSC-based therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2962904 | PMC |
http://dx.doi.org/10.1002/stem.269 | DOI Listing |
J Immunother Cancer
January 2025
National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.
Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.
J Reprod Immunol
December 2024
Department of Histology and Embryology, Medical School, University of Cukurova, Adana, Turkiye.
Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.
View Article and Find Full Text PDFInt J Cancer
January 2025
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Lung cancer remains the foremost cause of cancer-related mortality worldwide. Clinical observations reveal a notable increase in both the proportion and mortality rate among female non-small cell lung cancer (NSCLC) patients compared to males, a trend that continues to escalate. Extensive preclinical research underscores the pivotal role of estrogen in the initiation, progression, prognosis, and treatment response of NSCLC.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.
Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!