Although many in vitro fibrin studies are performed with plasma, in vivo clots and thrombi contain erythrocytes, or red blood cells (RBCs). To determine the effects of RBCs on fibrin clot structure and mechanical properties, we compared plasma clots without RBCs to those prepared with low (2 vol%), intermediate (5-10 vol%), or high (> or =20 vol%) numbers of RBCs. By confocal microscopy, we found that low RBC concentrations had little effect on clot structure. Intermediate RBC concentrations caused heterogeneity in the fiber network with pockets of densely packed fibers alongside regions with few fibers. With high levels of RBCs, fibers arranged more uniformly but loosely around the cells. Scanning electron micrographs demonstrated an uneven distribution of RBCs throughout the clot and a significant increase in fiber diameter upon RBC incorporation. While permeability was not affected by RBC addition, at 20% or higher RBCs, the ratio of viscous modulus (G'') to elastic modulus (G') increased significantly over that of a clot without any RBCs. RBCs triggered variability in the fibrin network structure, individual fiber characteristics, and overall clot viscoelasticity compared to the absence of cells. These results are important for understanding in vivo clots and thrombi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840711PMC
http://dx.doi.org/10.1160/TH09-03-0199DOI Listing

Publication Analysis

Top Keywords

rbcs
9
fibrin network
8
network structure
8
mechanical properties
8
vivo clots
8
clots thrombi
8
clot structure
8
rbc concentrations
8
clot
6
fibrin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!