The treatment of viral diseases remains an intractable problem facing the medical community. Conventional antivirals focus upon selective targeting of virus-encoded targets. However, the plasticity of viral nucleic acid mutation, coupled with the large number of progeny that can emerge from a single infected cells, often conspire to render conventional antivirals ineffective as resistant variants emerge. Compounding this, new viral pathogens are increasingly recognized and it is highly improbable that conventional approaches could address emerging pathogens in a timely manner. Our laboratories have adopted an orthogonal approach to combat viral disease: Target the host to deny the pathogen the ability to cause disease. The advantages of this novel approach are many-fold, including the potential to identify host pathways that are applicable to a broad-spectrum of pathogens. The acquisition of drug resistance might also be minimized since selective pressure is not directly placed upon the viral pathogen. Herein, we utilized this strategy of host-oriented therapeutics to screen small molecules for their abilities to block infection by multiple, unrelated virus types and identified FGI-104. FGI-104 demonstrates broad-spectrum inhibition of multiple blood-borne pathogens (HCV, HBV, HIV) as well as emerging biothreats (Ebola, VEE, Cowpox, PRRSV infection). We also demonstrate that FGI-104 displays an ability to prevent lethality from Ebola in vivo. Altogether, these findings reinforce the concept of host-oriented therapeutics and present a much-needed opportunity to identify antiviral drugs that are broad-spectrum and durable in their application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776286PMC

Publication Analysis

Top Keywords

conventional antivirals
8
host-oriented therapeutics
8
viral
6
fgi-104
4
fgi-104 broad-spectrum
4
broad-spectrum small
4
small molecule
4
molecule inhibitor
4
inhibitor viral
4
viral infection
4

Similar Publications

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Rationale: Mass vaccination, low cost of immunoglobulins, and new drugs led to the emergence of new, unusual patterns of hepatitis B serum markers. This study reported a rare case of hepatitis B with all 5 positive serum markers, including HBsAg, HBsAb, HBeAg, HBeAb, and HBcAb.

Patient Concerns: A 30-year-old female patient was admitted due to abnormal liver function.

View Article and Find Full Text PDF

Background: Herpes simplex encephalitis (HSE), caused by herpes simplex virus (HSV) is the most common cause of sporadic encephalitis that often presents as an emergency case of acute or sub-acute nature associated with poor prognosis. Early suspicion and prompt diagnostic testing with adequate antiviral therapy can only reduce morbidity and mortality associated with the disease. This study aims to evaluate the role of serological and molecular diagnosis of encephalitis caused by HSV 1 and 2 for timely detection of the disease.

View Article and Find Full Text PDF

Serum O-glycosylated HBsAg levels correlate with HBV RNA in HBeAg positive CHB patients during antiviral therapy.

Antiviral Res

January 2025

Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:

Background: Recent evidence has indicated that the O-glycosylated PreS2 domain of the middle HBsAg is a distinguishing characteristic that allows the identification of HBsAg of HBV Dane particles and SVPs. This study's objective was to assess the changes in serum O-glycosylated HBsAg levels in CHB patients undergoing ETV or Peg-IFNα treatment.

Methods: Our retrospective study enrolled 86 patients with genotype C CHB.

View Article and Find Full Text PDF

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!