Heterostructures are central to the efficient manipulation of charge carriers, excitons and photons for high-performance semiconductor devices. Although these can be formed by stepwise evaporation of molecular semiconductors, they are a considerable challenge for polymers owing to re-dissolution of the underlying layers. Here we demonstrate a simple and versatile photocrosslinking methodology based on sterically hindered bis(fluorophenyl azide)s. The photocrosslinking efficiency is high and dominated by alkyl side-chain insertion reactions, which do not degrade semiconductor properties. We demonstrate two new back-infiltrated and contiguous interpenetrating donor-acceptor heterostructures for photovoltaic applications that inherently overcome internal recombination losses by ensuring path continuity to give high carrier-collection efficiency. This provides the appropriate morphology for high-efficiency polymer-based photovoltaics. We also demonstrate photopatternable polymer-based field-effect transistors and light-emitting diodes, and highly efficient separate-confinement-heterostructure light-emitting diodes. These results open the way to the general development of high-performance polymer semiconductor heterostructures that have not previously been thought possible.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat2594DOI Listing

Publication Analysis

Top Keywords

high-performance polymer
8
light-emitting diodes
8
polymer semiconducting
4
semiconducting heterostructure
4
heterostructure devices
4
devices nitrene-mediated
4
nitrene-mediated photocrosslinking
4
photocrosslinking alkyl
4
alkyl side
4
side chains
4

Similar Publications

Constructing Strong and Tough Polymer Elastomers via Photoreversible Coumarin Dimer Mechanophores.

ACS Appl Mater Interfaces

December 2024

National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.

Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness.

View Article and Find Full Text PDF

A one-step and solvent-free strategy for high lignin-containing polyurethane elastomers with excellent mechanical and shape memory performance.

Int J Biol Macromol

December 2024

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.

Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.

View Article and Find Full Text PDF

Non-antibiotic dependent photothermal antibacterial hemostatic MXene hydrogel for infectious wounds healing.

Biomater Adv

December 2024

National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (TiCT) through employing HO/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA.

View Article and Find Full Text PDF

Semiconductive Coordination Polymer with Multi-Channel Charge Transfer for High-Performance Direct X-ray Detection.

Angew Chem Int Ed Engl

December 2024

Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China., CHINA.

Coordination polymers (CPs) are promising for direct X-ray detection and imaging owing to higher designability and outstanding stability, however, it remains a challenge to achieve highly X-ray detection performance, particularly both high sensitivity and low detection limit at the same operating voltage. Herein, we construct a new conjugated CP {[Co(BPTTz)(DIPA)] DMA}n (1, BPTTz = 2,5-bis(pyridine-4-yl)thiazolo[5,4-d]thiazole, H2DIPA = 2,5-diiodoterephthalic acid, DMA = N, N'-dimethylacetamide), with multi-channel charge transfer by regulating the linker mediated electronic-state, which reduces carrier losses resulting from recombination or quenching, enhances the efficiency of charge separation and transfer, thus further optimizes X-ray detection performance. The semiconductor prepared based on this strategy achieves record values including the highest mobility-lifetime product (μτ, 8.

View Article and Find Full Text PDF

Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography.

J Chromatogr A

December 2024

College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China. Electronic address:

The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!