Methylglyoxal (MG), a reactive dicarbonyl produced during glucose metabolism, induces oxidative stress and apoptosis. Under hyperglycemic conditions, the abnormal accumulation of MG is related to the development of diabetic complications. We examined the effects of MG on thioredoxin (Trx) and glutaredoxin (Grx) systems, two thiol-disulfide oxidoreductase systems that protect against oxidative damage of proteins, in bovine aortic endothelial cells (BAECs). The levels of protein carbonyls as markers of protein oxidation increased in BAECs exposed to MG at 5 mM, resulting in the loss of cell viability. Western blot analysis demonstrated that Trx protein level decreased when BAECs were exposed to 5 mM MG. MG also inactivated Trx reductase, which maintains Trx in the reduced/active state. Moreover, peroxiredoxin, which is dependent on Trx and Trx reductase to maintain its reduced state, was oxidized by 5 mM MG. No significant difference in the levels of Trx, Trx reductase, or peroxiredoxin was observed in BAECs exposed to MG at 1 mM; this concentration had little effect on protein carbonyl formation and cell viability. MG failed to decrease Grx activity, indicating that Trx is more susceptible to MG than Grx. Taken together, these findings suggest that MG causes dysfunction of the Trx system, including Trx and Trx reductase, in BAECs.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.09131fpDOI Listing

Publication Analysis

Top Keywords

trx reductase
16
trx
12
baecs exposed
12
trx trx
12
endothelial cells
8
cell viability
8
reductase
5
baecs
5
methylglyoxal dysfunction
4
dysfunction thioredoxin
4

Similar Publications

Background: The Mediterranean diet (MedD) exerts anti-inflammatory and anti-oxidant effects that are beneficial in autoimmune thyroid diseases (ATD). Recently, a gluten-free diet (GFD) has been proposed for non-celiac patients with Hashimoto's thyroiditis (HT), but its usefulness is under debate. The present pilot study evaluates the effects of these two dietary regimes, with a focus on redox homeostasis, in HT.

View Article and Find Full Text PDF

The oxidative modification of specific cysteine residues to persulfides is thought to be the main way by which hydrogen sulfide (HS) exerts its biological and signaling functions. Therefore, protein persulfidation represents an important thiol-switching mechanism as other reversible redox post-translational modifications. Considering their reductase activity but also their connections with proteins that generate HS and its related molecules, the glutaredoxin (GRX) and thioredoxin (TRX)-reducing systems have potential dual roles in both protein persulfidation and depersulfidation.

View Article and Find Full Text PDF

Schizosaccharomyces pombe Grx4 is subject to autophagic degradation under nitrogen- and iron- starvation and ER-stress.

Arch Biochem Biophys

February 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China. Electronic address:

Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified.

View Article and Find Full Text PDF

The immunosuppressive tumor environment, characterized by elevated redox levels, significantly impairs the effectiveness of oxidation and the immune response. Here, an electron-accepting-inspired glycopolymer-based nanoreactor (chitosan-grafted nitrobenzene nanoparticles) CNP employing hypoxia-activated group nitrobenzene was constructed to realize cascade bilateral regulation of ferroptosis and immune activation by intervening antioxidant systems. The as-prepared CNP could consume nicotinamide adenine dinucleotide phosphate (NADPH) in the hypoxia-response process, allowing it to be involved in the recycling of glutathione (GSH) and thioredoxin (Trx).

View Article and Find Full Text PDF

Molecular Basis of Thioredoxin-Dependent Arsenic Transformation in Methanogenic Archaea.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China.

Methanogenic archaea are known to play a crucial role in the biogeochemical cycling of arsenic (As); however, the molecular basis of As transformation mediated by methanogenic archaea remains poorly understood. Herein, the characterization of the redox transformation and methylation of As by , a model methanogenic archaeon, is reported. was demonstrated to mediate As(V) reduction via a cytoplasmic As reductase (ArsC) in the exponential phase of methanogenic growth and to methylate As(III) via a cytoplasmic As(III) methyltransferase (ArsM) in the stationary phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!