High-resolution mapping of chromatin features has emerged as an important strategy for understanding gene regulation and epigenetic inheritance. We describe an in vivo tagging system coupled to chromatin purification for genome-wide epigenetic profiling in Caenorhabditis elegans. In this system, we coexpressed the Escherichia coli biotin ligase enzyme (BirA), together with the C. elegans H3.3 gene fused to BioTag, a 23-amino-acid peptide serving as a biotinylation substrate for BirA, in vivo in worms. We found that the fusion BioTag::H3.3 was efficiently biotinylated in vivo. We developed methods to isolate chromatin under different salt extraction conditions, followed by affinity purification of biotinylated chromatin with streptavidin and genome-wide profiling with microarrays. We found that embryonic chromatin is differentially extracted with increasing salt concentrations. Interestingly, chromatin that remains insoluble after washing in 600 mM salt is enriched at 5' and 3' ends, suggesting the presence of large protein complexes that render chromatin insoluble at transcriptional initiation and termination sites. We also found that H3.3 landscapes from these salt fractions display consistent features that correlate with gene activity: the most highly expressed genes contain the most H3.3. This versatile two-component approach has the potential of facilitating genome-wide chromatin dynamics and regulatory site identification in C. elegans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831312PMC
http://dx.doi.org/10.1093/nar/gkp1090DOI Listing

Publication Analysis

Top Keywords

chromatin purification
8
profiling caenorhabditis
8
caenorhabditis elegans
8
chromatin
8
native chromatin
4
purification system
4
system epigenomic
4
epigenomic profiling
4
elegans
4
elegans high-resolution
4

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Molecular and cellular dynamics of the developing human neocortex.

Nature

January 2025

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.

View Article and Find Full Text PDF

Protocol for semisynthesis of histone H4 with site-specific modifications using irreversible sortase-mediated ligation.

STAR Protoc

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China. Electronic address:

Post-translational modifications (PTMs) of histone H4 play significant roles in the regulation of chromatin status. Here, we present a protocol for semisynthesis of histone H4 by sortase-mediated ligation (SML). We describe steps for solid-phase peptide synthesis of H4R40C(1-42), recombinant expression and purification of H4(41-102), expression and purification of eSrt(2A-9), and preparation of acrylamidine.

View Article and Find Full Text PDF

Transcriptional regulatory network reveals key transcription factors for regulating agronomic traits in soybean.

Genome Biol

December 2024

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China.

Background: Transcription factors (TFs) bind regulatory genomic regions to orchestrate spatio-temporal expression of target genes. Global dissection of the cistrome is critical for elucidating transcriptional networks underlying complex agronomic traits in crops.

Results: Here, we generate a comprehensive genome-wide binding map for 148 TFs using DNA affinity purification sequencing in soybean.

View Article and Find Full Text PDF

In this study, we analyzed the combination of affinity purification mass spectrometry (AP-MS) with high-field asymmetric waveform ion mobility spectrometry (FAIMS), integrated between nanoLC-MS and an Orbitrap Ascend Tribrid Mass Spectrometer. Our primary objective was to evaluate the application of the FAIMS interface for detecting affinity purified SAP25 protein complexes with enhanced sensitivity and robustness. As a result, we observed that nanoLC-FAIMS-MS (with FAIMS) significantly improved the sensitivity and detection limits at the protein level, peptide level and significantly reduced chemical contaminants compared to nanoLC-MS alone without FAIMS (No FAIMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!