Phase transitions and the chemical composition of minerals in Earth's interior influence geophysical interpretations of its deep structure and dynamics. A pressure-induced spin transition in olivine has been suggested to influence iron partitioning and depletion, resulting in a distinct layered structure in Earth's lower mantle. For a more realistic mantle composition (pyrolite), we observed a considerable change in the iron-magnesium partition coefficient at about 40 gigapascals that is explained by a spin transition at much lower pressures. However, only a small depletion of iron is observed in the major high-pressure phase (magnesium silicate perovskite), which may be explained by preferential retention of the iron ion Fe3+. Changes in mineral proportions or density are not associated with the change in partition coefficient. The observed density profile agrees well with seismological models, which suggests that pyrolite is a good model composition for the upper to middle parts of the lower mantle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1181443 | DOI Listing |
Int J Hematol Oncol Stem Cell Res
October 2024
Department of Endocrinology and Internal Medicine, Tahar Sfar University Hospital, Mahdia, Tunisia.
Primary vertebral lymphoma is an exceedingly rare entity. We hereby report a case of a 67-year-old male who presented to our department with fever, weight loss, and progressively worsening lower back pain radiating to the right hip. Physical examination showed pain on percussion of the dorsal and lumbar spine and tenderness on palpation of the right upper thigh area.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.
Dense hydrous magnesium silicate MgSiO_{4}H_{2} is widely regarded as a primary water carrier into the deep Earth. However, the stability fields of MgSiO_{4}H_{2} based on the prevailing structure model are narrower than experimental results at relevant pressure and temperature (P-T) conditions, casting doubts about this prominent mineral as a water carrier into the great depths of the Earth. Here, we report on an advanced structure search that identifies two new crystal structures, denoted as α- and β-MgSiO_{4}H_{2}, that are stable over unprecedentedly wide P-T conditions of 17-68 GPa and up to 1860 K, covering the entire experimentally determined range.
View Article and Find Full Text PDFProg Earth Planet Sci
December 2024
School of Earth Sciences, Zhejiang University, Hangzhou, China.
Recent experimental investigations of grain size evolution in bridgmanite-ferropericlase assemblages have suggested very slow growth for these bimodal phases. Despite numerous speculations on grain size-dependent viscosity, a comprehensive test with realistic grain size evolution parameters compatible with the lower mantle has been lacking. In this study, we develop self-consistent 2-D spherical half-annulus geodynamic models of Earth's evolution using the finite volume code StagYY to assess the role of grain size on lower mantle viscosity.
View Article and Find Full Text PDFSci Total Environ
December 2024
Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
Black carbon, or soot, significantly contributes to atmospheric light absorption due to its low single scattering albedo (SSA). This study investigates the impact of soot's hygroscopic restructuring on satellite remote sensing, focusing on radiative forcing, top-of-atmosphere (TOA) reflectance, and aerosol optical depth (AOD) retrievals. We characterized soot aging using relative humidity (RH) growth factor functions and modeled fresh and aging soot aggregates using a cluster-cluster aggregation algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!