Download full-text PDF

Source

Publication Analysis

Top Keywords

coincidentally determined
4
determined floating
4
floating ventricular
4
ventricular thrombus
4
thrombus patient
4
patient coronary
4
coronary artery
4
artery disease
4
coincidentally
1
floating
1

Similar Publications

Acetylation of proximal cysteine-lysine pairs by alcohol metabolism.

Redox Biol

December 2024

Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:

Alcohol consumption induces hepatocyte damage through complex processes involving oxidative stress and disrupted metabolism. These factors alter proteomic and epigenetic marks, including alcohol-induced protein acetylation, which is a key post-translational modification (PTM) that regulates hepatic metabolism and is associated with the pathogenesis of alcohol-associated liver disease (ALD). Recent evidence suggests lysine acetylation occurs when a proximal cysteine residue is within ∼15 Å of a lysine residue, referred to as a cysteine-lysine (Cys-Lys) pair.

View Article and Find Full Text PDF

Clinical Molecular Testing for Clonal Relatedness of Second Melanoma Tumors.

Arch Pathol Lab Med

December 2024

From the Departments of Pathology, University of Michigan Medical School, Ann Arbor (Plotzke, Manthei, Fullen, Chan, Bresler, Xiao, Andea, Harms).

Context.—: Patients with melanoma can develop second tumors representing either metastases or new primary melanoma. This distinction has profound implications for management.

View Article and Find Full Text PDF

Heterotaxy syndrome, a condition in which the internal organs are abnormally arranged in the thorax or abdomen, is generally diagnosed early in life, often during the neonatal period. We present the case of a 42-year-old male who was incidentally diagnosed with polysplenia syndrome and subsequently diagnosed with heterotaxy syndrome. Upon further investigation, he was determined to have a sinus venosus type atrial septal defect.

View Article and Find Full Text PDF

Background: Most cases of ovarian hyperstimulation syndrome (OHSS) are caused by infertility treatment using human menopausal gonadotropin (HMG) and human chorionic gonadotropin (hCG). OHSS is widely known to have a "spoke-wheel" appearance on imaging, presenting as bilateral symmetric enlargement of ovaries with multiple cysts of varying sizes. When this spoke-wheel appearance is observed in patients not undergoing infertility treatment, tumor-derived hormones such as follicle-stimulating hormone (FSH) and hCG should be measured.

View Article and Find Full Text PDF

Activation of IP10/CXCR3 Signaling is Highly Coincidental with PrP Deposition in the Brains of Scrapie-Infected Mice.

Biomed Environ Sci

November 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 100084, Zhejiang, China;Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China;China Academy of Chinese Medical Sciences, Beijing 100700, China;Shanghai Institute of Infectious Disease and Biosafety, Shanghai 200003, China.

Objective: To analyze the relationship between Chemokine IP10 and its receptor CXCR3 during prion infection.

Methods: We investigated the increases in IP10 signals, primarily localized in neurons within the brains of scrapie-infected mice, using western blotting, ELISA, co-immunoprecipitation, immunohistochemistry, immunofluorescence assays, and RT-PCR.

Results: Both CXCR3 levels and activation were significantly higher in the brains of scrapie-infected mice and prion-infected SMB-S15 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!