In this paper we present the design and prototyping of a 24-channel mixed signal full-customized CMOS integrated biosensor chip for in vitro extracellular recording of neural signals. Design and implementation of hierarchical modules including microelectrode electrophysiological sensors, analog signal buffers, high gain amplifier and control/interface units are presented in detail. The prototype chip was fabricated by MOSIS with AMI C5 0.5 microm, double poly, triple metal layer CMOS technology. The electroless gold plating process is used to replace the aluminum material obtained from the standard CMOS process with biocompatible metal gold in the planner microelectrode array sensors to prevent cell poisoning and undesirable electrochemical corrosion. The biosensor chip provides a satisfactory signal-to-noise ratio for neural signals with amplitudes and frequencies within the range of 600microV - 2mV and 100 Hz to 10KHz, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2009.5335152 | DOI Listing |
Micromachines (Basel)
December 2024
Ames National Laboratory, Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA.
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Integrated Circuits, Jiangnan University, Wuxi 214122, China.
In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and () in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and .
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
In recent years, the wine industry has been researching how to improve wine quality along the production value chain. In this scenario, we present here a new tool, MicroVi, a cost-effective chip-sized microscopy solution to detect and count yeast cells in wine samples. We demonstrate that this novel microscopy setup is able to measure the same type of samples as an optical microscopy system, but with smaller size equipment and with automated cell count configuration.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!