In this work we present an integrated method for electroencephalography (EEG) source localization in newborn infants, based on a realistic head model. To build a realistic head model we propose an interactive hybrid segmentation method for T1 magnetic resonance images (MRI), consisting of active contours, fuzzy c-means (FCM) clustering and mathematical morphology. Subsequently, we solve the localization problem using a spike train detection algorithm and an algorithm that deals with the forward and inverse problem. The performance of this fused method indicates that our realistic head model is suitable for the accurate localization of the EEG activity. We will present both initial qualitative and quantitative results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2009.5335052 | DOI Listing |
Brain Spine
December 2024
Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011, Lausanne, Switzerland.
Introduction: While cadaveric dissections remain the cornerstone of education in skull base surgery, they are associated with high costs, difficulty acquiring specimens, and a lack of pathology in anatomical samples. This study evaluated the impact of a hand-crafted three-dimensional (3D)-printed head model and virtual reality (VR) in enhancing skull base surgery training.
Research Question: How effective are 3D-printed models and VR in enhancing training in skull base surgery?
Materials And Methods: A two-day skull base training course was conducted with 12 neurosurgical trainees and 11 faculty members.
J Voice
January 2025
Department of Otolaryngology-Head and Neck Surgery, UCSF Voice and Swallowing Center, UCSF School of Medicine, San Francisco, CA. Electronic address:
Background: Laryngeal respiratory dystonia (LRD) is diagnosed based on clinical presentation, patient history, and physical examination. Key indicators include dyspnea, desynchronized breathing patterns, and laryngoscopic findings that reveal vocal fold adduction during inspiration. Treatment for LRD remains controversial and often yields limited effectiveness.
View Article and Find Full Text PDFNeuroimage
January 2025
Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea.
Unlabelled: 3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues () and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research.
Purpose: 3D cell culture develops life sciences by mimicking the natural cellular environment.
Front Neurol
December 2024
Department of Head and Neck Surgery and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
The relative accessibility and simplicity of vestibular sensing and vestibular-driven control of head and eye movements has made the vestibular system an attractive subject to experimenters and theoreticians interested in developing realistic quantitative models of how brains gather and interpret sense data and use it to guide behavior. Head stabilization and eye counter-rotation driven by vestibular sensory input in response to rotational perturbations represent natural, ecologically important behaviors that can be reproduced in the laboratory and analyzed using relatively simple mathematical models. Models drawn from dynamical systems and control theory have previously been used to analyze the behavior of vestibular sensory neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!