This paper presents a performance evaluation of wireless communications applicable into a capsule endoscope. A numerical model to describe the received signal strength (RSS) radiated from a capsule-sized signal generator is derived through measurements in which a liquid phantom that has equivalent electrical constants is used. By introducing this model and taking into account the characteristics of its direction pattern of the capsule and propagation distance between the implanted capsule and on-body antenna, a cumulative distribution function (CDF) of the received SNR is evaluated. Then, simulation results related to the error ratio in the wireless channel are obtained. These results show that the frequencies of 611 MHz or lesser would be useful for the capsule endoscope applications from the view point of error rate performance. Further, we show that the use of antenna diversity brings additional gain to this application.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2009.5333613DOI Listing

Publication Analysis

Top Keywords

capsule endoscope
12
performance evaluation
8
evaluation wireless
8
wireless communications
8
capsule
5
communications capsule
4
endoscope paper
4
paper presents
4
presents performance
4
communications applicable
4

Similar Publications

Reducing reading time and assessing disease in capsule endoscopy videos: A deep learning approach.

Int J Med Inform

January 2025

University of Coimbra, Faculty of Medicine, Coimbra, Portugal; Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. Electronic address:

Background: The wireless capsule endoscope (CE) is a valuable diagnostic tool in gastroenterology, offering a safe and minimally invasive visualization of the gastrointestinal tract. One of the few drawbacks identified by the gastroenterology community is the time-consuming task of analyzing CE videos.

Objectives: This article investigates the feasibility of a computer-aided diagnostic method to speed up CE video analysis.

View Article and Find Full Text PDF

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Background: Craniopharyngiomas are epithelial tumors derived from the remnants of the Rathke pouch, while Rathke cleft cysts (RCC) are benign cystic lesions originating from the Rathke pouch itself [1]. Rathke cleft cysts comprise 10-15% of the hypophyseal tumors, while craniopharyngiomas are relatively rare, comprising only 2-5% of intracranial tumors [2]. Both located in the sellar and parasellar regions and share clinical symptoms including headache, visual disturbances, and endocrine dysfunction [3].

View Article and Find Full Text PDF

Wide FOV metalens for near-infrared capsule endoscopy: advancing compact medical imaging.

Nanophotonics

November 2024

National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

This study presents the design, fabrication, and characterization of a wide field-of-view (FOV) metalens optimized for capsule endoscopy. The metalens achieved a 165° FOV with a high modulation transfer function (MTF) of 300 lines per millimeter (lp/mm) across the entire FOV, operating in the near-infrared (NIR) narrow-bandpass imaging at 940 nm. The performance of the metalens-based system is evaluated using two bandwidths, 12 nm and 32 nm, showing MTF values of 0.

View Article and Find Full Text PDF

The living human inner ear is challenging to study because it is encased within dense otic capsule bone that limits access to biological tissue. Traditional temporal bone histopathology methods rely on lengthy, expensive decalcification protocols that take 9-10 months and reduce the types of tissue analysis possible due to RNA degradation. There is a critical need to develop methods to access fresh human inner ear tissue to better understand otologic diseases, such as Ménière's disease, at the cellular and molecular level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!