The neocortex is the most common target of sub-dural electrotherapy and non-invasive brain stimulation modalities including transcranial magnetic stimulation (TMS) and transcranial direct current simulation (tDCS). Specific neuronal elements targeted by cortical stimulation are considered to underlie therapeutic effects, but the exact cell-type(s) affected by these methods remains poorly understood. We determined if neuronal morphology predicted responses to subthreshold uniform electric fields. We characterized the effects of subthreshold electrical stimulation on identified cortical neurons in vitro. Uniform electric fields were applied to rat motor cortex brain slices, while recording from interneurons and pyramidal cells across cortical layers, using whole cell patch clamp. Neuron morphology was reconstructed following intracellular dialysis of biocytin. Based solely on volume-weighted morphology, we developed a simplified model of neuronal polarization by sub-threshold electric field: an electrotonically linear cylinder that further predicts polarization at distal dendritic tree terminations. We found that neuronal morphology correlated with somatic sub-threshold polarization. Layer V/VI pyramidal neuron somata (individually) and dendrites (averaging across neurons) were most sensitive to sub-threshold fields. This analysis was extended to predict a terminal polarization of a human cortical neuron as 1.44 mV during tDCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849761PMC
http://dx.doi.org/10.1109/IEMBS.2009.5333586DOI Listing

Publication Analysis

Top Keywords

uniform electric
12
electric field
8
neuronal morphology
8
electric fields
8
one-dimensional representation
4
neuron
4
representation neuron
4
neuron uniform
4
electric
4
field neocortex
4

Similar Publications

Retrospective Cohort Study on the Incidence and Management of Hemiplegic Shoulder Pain in Stroke Inpatients.

Cureus

December 2024

Physical Medicine and Rehabilitation, Centro de Reabilitação do Norte, Vila Nova de Gaia, PRT.

Background: Painful hemiplegic shoulder (PHS) is a prevalent and challenging complication following a stroke and can significantly impair a patient's engagement in rehabilitation, leading to poorer functional outcomes and extended hospital stays. This retrospective cohort study aims to investigate the incidence, etiology, and management of PHS in stroke inpatients, focusing on the effectiveness of various therapeutic interventions.

Methods: We conducted a retrospective analysis of subacute stroke inpatients who developed PHS during rehabilitation at a single center.

View Article and Find Full Text PDF

A major challenge in neuroscience is visualizing the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features but suffers from staining variability, tissue damage, and distortion, which impedes accurate 3D reconstructions. The emerging label-free serial sectioning optical coherence tomography (S-OCT) technique offers uniform 3D imaging capability across samples but has poor histological interpretability despite its sensitivity to cortical features.

View Article and Find Full Text PDF

To improve the stability of D-limonene, a protective barrier is essential to prevent degradation and maintain its integrity. Therefore, the potential of using seed gum (LPSG) as a novel source for creating electrospun nanofibers for D-limonene encapsulation was investigated by varying LPSG concentrations (0.25%, 0.

View Article and Find Full Text PDF

Thermoelectrics can mutually convert between thermal and electrical energy, ensuring its utilization in both power generation and solid-state cooling. BiTe exhibits promising room-temperature performance, making it the sole commercially available thermoelectrics to date. Guided by the lattice plainification strategy, we introduce trace amounts of Cu into n-type Bi(Te, Se) (BTS) to occupy Bi vacancies, thereby simultaneously weakening defect scattering and modulating the electronic bands.

View Article and Find Full Text PDF

Background And Aim: Zoonotic diseases caused by various blood parasites are important public health concerns that impact animals and humans worldwide. The traditional method of microscopic examination for parasite diagnosis is labor-intensive, time-consuming, and prone to variability among observers, necessitating highly skilled and experienced personnel. Therefore, an innovative approach is required to enhance the conventional method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!