Motion artifacts are one of the issues in cardiac optical mapping studies. This paper is focused on the description of the motion artifacts caused by planar movement. The theory of its origin and possibilities of its suppression is described. The suppression of the motion artifacts is based on image registration techniques. There are introduced the characteristics about influence of the weighted area averages on presence of these artifacts. In this study conventional pharmacological or mechanical ways of motion artifacts suppression were not involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2009.5333531 | DOI Listing |
JACC Cardiovasc Interv
January 2025
Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address:
Hum Brain Mapp
February 2025
Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI.
View Article and Find Full Text PDFMagn Reson Med
January 2025
MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Purpose: MR-based FID navigators (FIDnavs) do not require gradient pulses and are attractive for prospective motion correction (PMC) due to short acquisition times and high sampling rates. However, accuracy and precision are limited and depend on a separate calibration measurement. Besides FIDnavs, stationary NMR field probes are also capable of measuring local, motion-induced field changes.
View Article and Find Full Text PDFFront Robot AI
January 2025
AAU Energy, Aalborg University, Esbjerg, Denmark.
Introduction: Subsea applications recently received increasing attention due to the global expansion of offshore energy, seabed infrastructure, and maritime activities; complex inspection, maintenance, and repair tasks in this domain are regularly solved with pilot-controlled, tethered remote-operated vehicles to reduce the use of human divers. However, collecting and precisely labeling submerged data is challenging due to uncontrollable and harsh environmental factors. As an alternative, synthetic environments offer cost-effective, controlled alternatives to real-world operations, with access to detailed ground-truth data.
View Article and Find Full Text PDFConf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA.
Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!