Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ElectroNanospray process (Nanocopoeia, Inc) transforms drugs and polymers into many nanoscale material states including powders, liquids, encapsulated particles, and coatings. This enabling technology platform allows application of polymers and drugs to the surface of medical devices such as coronary stents in a single-stage process. Modification of ElectroNanospray process parameters resulted in surface coatings with rich morphologies ranging in appearance from smooth and heterogeneous to highly porous and rough (open matrix). The traditional approach of measuring percent release over time by HPLC shows that the drug release profiles change significantly with coating morphology. In this study, we employed high resolution imaging techniques such as SEM, Atomic Force Microscopy (AFM) and Confocal Raman Microscopy to elucidate the drug release process on these coatings in situ, indicating a correlation of release kinetics with coating morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2009.5332670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!